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1 Introduction

Quantum Electrodynamics (or QED) is a branch of Quantum Field Theory which modelizes more
particularly the interactions between matter and light. It has been mainly developed by Dyson,
Feynman, Schwinger, and Tomonaga. These last three’s contribution has even been awarded by a
Nobel prize in 1965. It is a theory with an unknown number of particles which has a remarkable
ability of numerical prediction, even if its mathematical background is yet to be found. A
perturbative approach leads to very accurate results but there is still no satisfying variational
formulation of QED. Therefore, we will introduce in this paper a mean-field approximation of
QED which is fully non-perturbative. It has been developed by Hainzl, Lewin, Séré and Solovej
[HLS05b, HLS07, HLS09, HLS05a] after the influence of Chaix, Iracane, and Lions [CI89, CIL89]
and the previous works of Bach, Barbaroux, Helffer and Siedentop [BBHS99]. A review of these
results can be found in [Lew09].

The model we are going to describe is an approximation of the full QED, where we will
neglect photons and where there is no magnetic field. As a consequence, we cannot expect any
quantitative resut from this approach since most of the physical effects are due to the presence of
photons. However, many qualitative aspects of Quantum Field Theory are present in this theory,
such as renormalization. It is therefore of interest to study such a model. Finally, a variational
formulation may be interesting algorithm-wise, since we minimize a functional.

1.1 The inner difficulties of relativistic models

There exists several ways to establish a N -body relativistic quantum model. First of all, it
seems quite natural to try to adapt the non-relativistic theory to the relativistic case. The
energy operator (or Hamiltonian) of N non-relativistic quantum particles moving in R3 acts on
L2(R3; C)⊗N . It can be written

HN =
N∑
i=1

(Eki + Vi) +
∑
i 6=j

Ωij ,

where Eki represents the kinetic energy of the i-th particle, Vi its potential energy, and Ωij the
interaction between the particles i and j (Coulombian for instance). The state of a N -body
quantum system is represented in a general manner by a function ψ ∈ L2(R3; C)⊗N of norm
1, called the wave function of this quantum system. As it is, it does not represent anything
physically but contains all the information of the considered quantum system. Indeed, the quan-
tity |ψ(x1, . . . , xN )|2dx1 . . . dxN represents the probability to find the first particle in position
x1 ∈ R3 with dx1 for error, the second in x2 with dx2 for error, and so on. More precisely,
|ψ|2 represent the presence probability density of the particle. Conversely, the square norm of
the Fourier transform |ψ̂(p)|2 is the probability density of momentum p for the particle. The
non-relativistic kinetic energy operator of the particle i is then

Eki : ψ 7→ − 1
2mi

∆xiψ,

where mi is the mass of the i-th particle, and ∆xi is the Laplacian with respect to the variable
xi ∈ R3. In the relativistic case, the one-particle energy operator does not act on L2(R3; C)
anymore, but on L2(R3; C4), and is written

Dc := −icα· ∇+mc2β = −ic
3∑
k=1

αk∂k +mc2β.
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The αk and the β are 4 × 4 self-adjoint matrices, c is the speed of light, m is the mass of the
considered particle, i is the complex number, and ∇ the gradient operator. More precisely,

β =
[
I2 0
0 −I2

]
, αk =

[
0 σk
σk 0

]
,

where the (σk)k=1,2,3 are the Pauli matrices defined by

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

This operator has been introduced by Dirac, and his particularity lies in its spectrum which
is nothing but

σ(Dc) = (−∞;−mc2] ∪ [mc2; +∞),

where the non-relativistic spectrum is

σ(−∆) = [0; +∞).

This difference is fundamental. Indeed, according to a quantum mechanics postulate, the energy
of a quantum system can only be an element of the Hamiltonian’s spectrum. Furthermore, the
study of the state of lowest energy the system can reach (or ground state) is of the greatest
importance for the understanding of the stability of matter. In the non-relativistic case, the
kinetic energy operator is bounded from below, and so is the total Hamiltonian under some
conditions. We are therefore capable of proving the stability of a non-relativisitic molecule.
However, the relativistic kinetic energy is not bounded from below, even for one body. Also,
there is no state of lowest energy and one has to adapt the model.

Remark 1.1. Dirac chose this operator for several reasons. He wanted first an operator which
verifies

(Dc)2 = −c2∆ +m2c4,

in order to adapt the classical relativistic formula E2 = c2p2 + m2c4 with the quantum corre-
spondance p ↔ −i∇. This relation explains the form of the spectrum of Dc. Moreover Dirac
was looking for a local operator, that is a polynomial in the spatial derivatives. Since (Dc)2 is of
order two, Dirac looked for an operator of order one. However, the lowest dimension where these
equations have a solution is 4. That’s why the (αk) and β are 4×4 matrices. The fact that wave
functions must then have 4 components is relevant physically: it may be interpreted as the spin
(up or down) distinction and the matter/antimatter (electron/positron) distinction. One may be
careful with the notion of positron which is not really clear though, but this distinction remains
of first importance.

Remark 1.2. If one ignores the negative part of the Dirac operator’s spectrum, one can see that
it corresponds to a well-known relativistic result: an electron cannot have a kinetic energy lower
than mc2, which is its mass energy.

Dirac’s idea was to interpret the form of his spectrum in the following way. Even if negative
kinetic energy elecrons are not observable, Dirac conjectured the existence of “virtual” electrons
which occupy the negative kinetic energy states of his operator. Moreover, the Pauli principle
forbids two different electrons to occupy the same energy state. Therefore, a “real” electron
could not have a negative kinetic energy since all these states should be already occupied by
“virtual” electrons. This interpretation gives a chance to develop a relativistic theory relevant
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from a variational point of view, that is where the ground state actually minimizes the energy
of the system.

These negative kinetic energy electrons are usually refered to as the Dirac sea. One may infer
that if we give to one of these electrons an energy greater than 2mc2, it may have a positive
energy and change side of the spectrum. A hole would then be created in the negative spectrum,
and such a hole would have a positive energy with respect to the Dirac sea. This positive energy
pair of a “virtual” particle which becomes an electron by switching to the positive side of the
spectrum and the hole thus created is called an electron/positron pair. Dirac actually predicted
their existence:

Admettons que dans l’Univers tel que nous le connaissons, les états d’energie négative
soient presque tous occupés par des électrons, et que la distribution ainsi obtenue ne
soit pas accessible à notre observation à cause de son uniformité dans toute l’étendue
de l’espace. Dans ces conditions, tout état d’energie négative non occupé représentant
une rupture de cette uniformité, doit se révéler à l’observation comme une sorte de
lacune. Il est possible d’admettre que ces lacunes constituent les positrons.

Dirac, P.A.M.: Théorie du Positron, Solvay Report XXV, pp. 203-212, 1934.

Remark 1.3. Notice the importance given by Dirac to the uniform aspect of the Dirac sea, which
makes it not observable. Later on, we will characterize this property by the term translation
invariant, and notice that the vacuum we will build satisfies this property which is physically
relevant.

This idea allows a better understanding of the one-particle Dirac operator. However, we
cannot adapt this interpretation when we deal with several bodies. For instance, let us con-
sider a two-body system, without external potential and where interactions are neglected. The
Hamiltonian of this sytem described by a wave function in L2(R3; C4)⊗ L2(R3; C4) is

H2 = Dc ⊗ Id + Id⊗Dc,

where Id is the identity operator of L2(R3; C4). We can deduce the spectrum of H2 with respect
to the one of Dc. Indeed, one can easily see that for operators A,B,

σ(Id⊗A+B ⊗ Id) = σ(A) + σ(B).

So that σ(H2) = σ(Dc)+σ(Dc) = R. The two-body energy operator spectrum allows any energy
level, and Dirac’s interpretation is not clear anymore: shall we again fill all the negative energy
states, in which case the energy of a molecule would be always positive and thus there would be
no bound state for electrons attracted by a nucleus? Shall we then fill only some of the negative
energy states? If we do, which ones? One may realize the issues involved by such choices, both
mathematically and physically speaking. We thus have to choose another model.

There are many consequences of Dirac’s interpretation. First of all, the fact that the Dirac sea
is by default filled by infinitely many particles, though virtual, implies that this sea has infinite
charge and energy. We may overcome this difficulty by redefining the energy, the charge, or any
other physical quantity by its value with respect to the Dirac sea. From a physical point of view,
it is not shocking since this sea is not obsvervable and thus all the measures are done with respect
to a state of reference, the one of the vacuum present by default. Furthermore, we may notice
that virtual particles must interact with the real ones. Also, the study of a quantum system
in the vacuum should always take into account infinetely many particles. The functional work
space should thus be modified. Finally, these vacuum particles should also feel the influence of
an electromagnetic external field as any charged particle. We call this phenomenon the vacuum
polarization, which has already been observed experimentally.
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1.2 Infinitely many-body models

As we have seen, QED must deal with infinitely many particles. Speaking differently, a state of
the system can have an infinite number of particle. We thus have to define a functional space
which allows states with an infinite number of particles. If h denotes the Hilbert space describing
the one-particle states, then the N -body fermionic Hilbert space is

hN :=
N∧
i=1

h,

which is the C-vector space spanned by the Slater determinants of the form ϕi1 ∧· · ·∧ϕiN , where
the (ϕi) are a Hilbertian basis of h. Physically, it means that the first particle is in the state ϕi1 ,
the second in the state ϕi2 and so on. We call it “fermionic” because fermions are particles which
satisfy the Pauli principle, ie two different fermions cannot be in the same state. Indeed, if two
fermions are both in the state ϕ, we can see that the Slater determinant · · ·∧ϕ∧· · ·∧ϕ∧· · · = 0.
Therefore the Pauli principle is kind of implemented in the building of the N -body space.

Example 1.1. If h = L2(R3; C), then ϕi1 ∧ · · · ∧ ϕiN (x1, . . . , xN ) = det(ϕik(xl))16k,l6N , hence
the name Slater determinant.

We then define the Fock space F , which contains all the N -particles spaces,

F :=
∞⊕
N=0

hN .

Here we have taken the definition h0 := C.
Usually, the state of a system in quantum mechanics is a normalized vector of the underlying

Hilbert space, here ϕ ∈ F , ‖ϕ‖F = 1. In the following, we will use the usual “bra-ket” notation,
where |ϕ〉 denotes the vector ϕ and 〈ϕ| denotes the linear form |ψ〉 7→ 〈ϕ|ψ〉F , where 〈·|·〉F is
the scalar product in the Fock space. For instance, the notation |ϕ〉〈ϕ| denotes the orthogonal
projector on span(ϕ), that is the map |ψ〉 7→ 〈ϕ|ψ〉F |ϕ〉. In this study we will use a larger class
of states, defined for instance in [BLS94].

Definition 1.1. Let B(F) denote the set of all bounded operators on F . Then a state Ω is a
linear form on B(F) satisfying Ω(Id) = 1 and Ω(A∗A) > 0 for all A ∈ B(F).

Example 1.2. Any ϕ ∈ F normalized can be seen as such a state by the map A 7→ 〈ϕ|Aϕ〉F .
Such states are called pure states. That is why this definition is a generalization of the usual
concept of state.

We also recall the following quantum mechanics postulate. For any physical quantity a
(position, momentum, energy,...) corresponds a selfadjoint operator A on the underlying Hilbert
space. For instance, we saw that the corresponding operator for the energy is the Hamiltonian
operator. If the state of the system is a vector ϕ of the Hilbert space, then the average value
(or expectation value) of a for the system is 〈ϕ|Aϕ〉. If Ω is a state as defined earlier, then the
expectation value of a is Ω(A).

1.3 Mean-field (Hartree-Fock) approximation

In this study, we will focus on the problem of finding the fundamental state of a given Hamil-
tonian. However, this goal is quite difficult to attain even in an N -body non-relativistic theory.

6



Numerical issues have led to consider a simpler problem where we minimize the energy over a
smaller set.

More precisely, let us take the example of a N electrons system. The Pauli principle imposes
the wave function describing the system to be antisymmetric, so that the work space is not
L2(R3; C)⊗N but L2(R3; C)∧N . The average energy of a N -body quantum system in the state ψ
is given by

EN (ψ) = 〈HNψ,ψ〉,

where we recall that HN denotes the N -body Hamiltonian. The search for a ground state consists
in solving the following minimization problem

EN0 := inf
ψ∈L2(R3;C)∧N

‖ψ‖=1

EN (ψ).

A minimizer for this problem is called a ground state. The mean-field approximation called
Hartree-Fock chooses to pose this problem on a subset of L2(R3; C)∧N . Indeed, we only consider
functions given by a single Slater determinant, that is functions of the form ψ1 ∧ · · · ∧ψN where
ψi ∈ L2(R3; C), ‖ψ‖ = 1. Such states are called Hartree-Fock states. This approximation
seems simpler since we drastically limit the test functions, but one has to notice that the set of
minimization is not linear, so that the model becomes non-linear.

One can show that for such states, the energy only depends on the orthogonal projector on
span(ψi)

P =
∑
i

|ψi〉〈ψi|.

Hartree-Fock theories have been widely studied in other contexts, see [LS77, BLS94].
In the case of QED, we work in a space with an infinite number of particles. We may also

define Hartree-Fock states in this space. The key property of such states is that the energy will
also only depend of the orthogonal projector on span(ψi). This property is very useful since
this projector P acts on the one-body space which is much simpler than the huge Fock space
containing all the N -body spaces.

A more precise description of Hartree-Fock states can be found in the appendix.

1.4 The Hainzl, Lewin, Séré and Solovej approach

The model we are going to introduce has been inspired by an article of Chaix and Iracane [CI89].
According to them, the unboundedness from below of the Dirac makes the Dirac interpretation
mandatory. The issue is to find the right way to implement this interpretation in the formulation
of QED, the aim being to obtain an energy functional which is bounded from below. Hainzl,
Lewin, Séré and Solovej propose the following method, which generalizes in a way the work
of Chaix and Iracane. The first step is to define what is the vacuum, which will be a fixed
reference state for all the measures of physical quantities. According to Dirac, it is made of
virtual particles which are not observable. Hainzl, Lewin, Séré and Solovej propose to define
the energy in the following way. If HQED is the QED Hamiltonian and if |0〉 is the vacuum, the
effective Hamiltonian H̃QED is defined as

H̃QED := HQED − 〈0|HQED|0〉.

There is several issues with this method. First, one has to choose a right reference for
the vacuum. The choice of Chaix and Iracane is the spectral projector of the Dirac operator
P 0 := χ(−∞;0](D), which corresponds to the choice of Dirac. In this study, we will motivate the
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choice of this vacuum as the minimizer of a certain energy, such that the Dirac interpretation
is not an input but a consequence of the theory. Note that in the work of Hainzl, Lewin, Séré
and Solovej, the energy they define is different from the one we will choose in this study, so that
P 0 is not their choice for a reference state. Secondly, we have to give a sense to the expression
〈0|HQED|0〉, because we saw that the vacuum had an infinite energy. We will tackle this issue by
defining our energy in a box and by obtaining results in the whole space with a method called
a thermodynamic limit, which consists in studying the limit of the energy and its minimizers as
the size of the box grows.

This method has been used by Hainzl, Lewin, Séré and Solovej to develop a variational
approach to QED. In this study, we will present this method.

1.5 Presentation of the study

We will proceed as follows:

• In the whole study, a cutoff Λ is fixed in the Fourier domain. This condition is linked to
the renormalization of the physical quantities in QED.

• We start by defining the Hamiltonian of QED in a box CL := [−L/2;L/2)3 from the formal
QED Hamiltonian given by Physics. In this context, it is perfectly well defined.

• We then minimize the energy in a box coming from this Hamiltonian to find the free vacuum
in a box.

• We define an energy per unit volume in the whole space as the limit of the energy in a box
for a certain class of states. This energy is minimized and we prove that its minimizer, the
free vacuum is the limit as L→∞ of the minimizer in a box. This is the thermodynamic
limit. That is how we justify the choice of P 0 as the free vacuum as the limit of the
minimizers in a box and as the minimizer of the energy per unit volume in the whole space.

• We now define the energy of any state by measuring it relatively to the energy of the free
vacuum. We do it formally, and it can again be justified by a thermodynamic limit. This
energy is called the Bogoliubov-Dirac-Fock (BDF) energy.

• We define the right functional setting where we study the BDF energy. Then, we prove
that it is bounded from below on this setting.

• We finally study the existence of atoms and molecules in this model, that is minimizing
the BDF energy over a set of states with a fixed charge.

2 Derivation of the reduced model

2.1 Formal derivation of the QED energy

From the formal expression of the QED Hamiltonian given by Physics, we will write the formula
for the QED energy in the HF approximation. To give a mathematical meaning to this formula,
we will see the usefulness of working in a box with a Fourier cutoff. In this case, the derivation
can be done in a rigorous manner.
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2.1.1 QED Hamiltonian

In Physics, the QED Hamiltonian without photons in Coulomb gauge and in an external elec-
trostatic field ϕ is formally written as [Sch48]

Hϕ :=
∫
ψ(x)∗D0ψ(x) dx+

∫
ϕ(x)ρ(x) dx+

α

2

∫∫
ρ(x)ρ(y)
|x− y|

dx dy, (2.1)

where ψ(x)∗ is the second-quantized field operator and ψ(x) is its adjoint. More precisely, they
are four components vectors with operator entries. For each σ ∈ {1, . . . , 4}, ψ(x)σ acts on the
Fock space F by annihilating a particle in position x ∈ R3 with spin1 σ. Conversely, ψ(x)∗σ
creates a particle in position x with spin σ. They satisfy the classical anticommutation relations
(CAR)

{ψ(x)∗σψ(y)σ′} = δσ,σ′δx,y,

where {A,B} = AB + BA. In (2.1), D0 is the one-particle Dirac operator which we have
introduced before, and ρ(x) is the density operator defined by

ρ(x) =
1
2

4∑
σ=1

ψ(x)∗σψ(x)σ − ψ(x)σψ(x)∗σ. (2.2)

Finally, α is the (bare) fine structure constant. Notice that in full QED, one must consider
photons and possibly an external magnetic field.

Our main goal will be the search for the ground state of this Hamiltonian under some con-
straints. Here, the ground state is the state of lowest energy. For instance, the ground state
with ϕ = 0 is called the free vacuum, whereas the ground state with ϕ 6= 0 is the polarized
vacuum. If one wants to study atoms and molecules, the ground state must be studied under
charge constraints rather than with a fixed number of particles2.

However, we will not minimize the energy over the whole Fock space in this work since we
will study it in the HF approximation.

2.1.2 Hartree-Fock (mean-field) approximation

We will study the QED Hamiltonian (2.1) over a subset of the Fock space which is formed
by Hartree-Fock states. These states have the particularity of being fully described by their
one-body density matrix P (x, y) defined for any state Ω by

P (x, y)σ,σ′ = Ω (ψ(x)∗σψ(y)σ′) .

For instance, if Ω = ϕ1 ∧ · · · ∧ϕN is a N -particle Slater determinant, P (x, y) =
∑
i ϕi(x)ϕi(y)

T
.

The one-body density matrix defines an operator P on the one-particle space with kernel P (x, y).
This operator satisfies 0 6 P 6 I, where I is the identity operator. In the case of a Slater
determinant, P is nothing but the orthogonal projector on the subspace spanned by the (ϕi).
Notice that the operator P is defined for any state and not only Hartree-Fock states.

1The term “spin” is used there in a general meaning, as an inner degree of freedom.
2Indeed, it is a well-know fact that the QED Hamiltonian does not conserve the number of particles: electron-

positron pair creation may occur. That is why an electron is for instance defined as the ground state of this
Hamiltonian with the constraint that the system must have a charge −e. Moreover, the actual number of particle
of a ground state will be infinite whereas the charge is measured relatively to the vacuum so that it will be finite.
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For normalization reasons, the main variable of the energy we will consider is not P but
γ := P − I/2, which we call the renormalized density matrix. Via the CAR, one may notice that
it is equivalent to define γ by

γ(x, y)σ,σ′ =
1
2

Ω ([ψ(x)∗σ, ψ(y)σ′ ]) , (2.3)

where [A,B] = AB −BA. We will precise this choice later.

2.1.3 Hartree-Fock energy

The Hartree-Fock energy for a Hartree-Fock state with (renormalized) density matrix γ can be
formally computed as

EϕHF(γ) := tr(D0γ)+α
∫
ργ(x)ϕ(x) dx+

α

2

∫∫
ργ(x)ργ(y)
|x− y|

dxdy−α
2

∫∫
‖γ(x, y)‖2

|x− y|
dxdy, (2.4)

where ργ(x) = Ω (ρ(x)) is the density of charge of γ and ‖A‖2 = TrC4 (A∗A) is the Hilbert-
Schmidt norm of A. This energy has the following physical interpretation: the term with D0

measures the kinetic energy of the system, while the term with ϕ measures its potential energy.
The last two terms measure the self-energy of the system, that is the interaction energy between
the electrons. In the third term (or direct term), the density of charge ργ interacts with itself
through a Coulomb potential. The last term (or exchange term) is a compensation term taking
into account the fact that a particle cannot interact with itself.

For the sake of simplicity, we will consider in this study the HF energy when we drop the
exchange term. We will however shortly explain how to deal with the complete model (see remark
3.1).

Our first goal will consist in giving a precise mathematical meaning to this energy. As it is
written in (2.4), it is not properly defined. Indeed, if P is an orthogonal projector on an infinite
dimensional subspace, γ = P − I/2 is never compact and therefore D0P is not trace-class. The
approach proposed in this study, following [HLS07], is to give a rigourous mathematical meaning
to this energy by confining the system in a box CL := [−L/2;L/2)3 with a cutoff Λ in the
Fourier domain. Afterwards, the energy for a system in the whole space will be obtained as a
thermodynamic limit of the energy in a box when L→∞. During the thermodynamic limit, we
will keep the cutoff Λ, which is actually necessary for a variational formulation of QED [HLS05b,
Theorem 2]. Actually, it has been predicted by Landau et al that the limit Λ→∞ does not, as
such, make sense from a physical point of view. It has also been argued by Dirac in [Dir34] that
QED could only be valid up to a certain level of energy, so that the introduction of such a cutoff
is justified.

2.2 Rigourous derivation of the QED energy in a box

2.2.1 Notations

We will use the same notations as in [HLS07]. In order to confine the system in the box
CL := [−L/2;L/2)3, we first have to restrain the one-body space from L2(R3; C4) to L2(CL; C4).
Furthermore, we choose to add periodic boundary conditions so that the one-body space is in
fact L2(TL; C4) where TL is the torus R3/(LZ3). Then, any function ϕ ∈ L2(TL; C4) can be
written by Fourier transform

ϕ(x) =
(

2π
L

)3/2 ∑
k∈(2π/L)Z3

ϕ̂(k)ek(x),
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where ek(x) := eik·x/L3/2. The Fourier cutoff Λ is implemented by replacing L2(TL; C4) to its
following finite-dimensional subspace

HLΛ := span
{
εσek ; k ∈ ΓLΛ, σ ∈ {1, . . . , 4}

}
,

where
ΓLΛ := (2π/L)Z3 ∩B(0,Λ),

and (εσ)σ=1,...,4 is the canonical basis of C4.

Remark 2.1. This a key fact for the definition of the model that HLΛ is finite-dimensional.

With this definition of the coefficients ϕ̂(k) we have the following Parseval equality

〈ϕ,ψ〉L2(TL;C) =
(

2π
L

)3 ∑
k∈ΓLΛ

ϕ̂(k)ψ̂(k), (2.5)

and the following convolution equality

ϕ̂ ? ψ(k) = (2π)3/2ϕ̂(k)ψ̂(k). (2.6)

Definition 2.1 (Kernel operators). Let (X,µ) be a measured space. An operator Q on L2(X,µ)
is a kernel operator if there exists q ∈ L2(X ×X) so that for every f ∈ L2(X,µ) we have

Qf(x) =
∫
X

q(x, y)f(y) dµ(y).

The function q is called the kernel of the operator Q.

Remark 2.2. For the sake of simplicity, we will often denote the operator and its kernel by the
same letter, but we have to keep in mind that they are not the same mathematical objects.

Any operator Q on HLΛ has a matrix kernel of the form

Q(x, y) =
∑

k,`∈ΓLΛ

Q̂(k, `)ek(x)e`(y),

where Q̂(k, `) is a 4× 4 matrix defined by the following decomposition on the Fourier basis

Q(εσek) =
4∑

σ′=1

∑
`∈ΓLΛ

Q̂(k, `)σ′σεσ′e`. (2.7)

Definition 2.2 (Density of an operator). Let Q be an operator on HLΛ. Its density ρQ is then
defined as

ρQ(x) := TrC4 (Q(x, x)). (2.8)

We have the following useful lemma:

Lemma 2.1. Let Q be any operator on HLΛ. Then we have the equality∫
TL
ρQ(x)dx = tr(Q). (2.9)

11



Proof. Any operator Q on HLΛ has a matrix kernel of the form

Q(x, y) =
∑

k,`∈ΓLΛ

Q̂(k, `)ek(x)e`(y), (2.10)

From (2.10) we have on the one hand∫
TL

TrC4 (Q(x, x))dx =
∑

k,`∈ΓLΛ

TrC4

(
Q̂(k, `)

)
〈ek, e`〉L2(TL;C)

=
∑
k∈ΓLΛ

TrC4

(
Q̂(k, k)

)
.

On the other hand, from (2.7), we have

tr(Q) :=
4∑

σ=1

∑
k∈ΓLΛ

〈Q(ekεσ), ekεσ〉 =
4∑

σ=1

∑
k∈ΓLΛ

Q̂(k, k)σσ =
∑
k∈ΓLΛ

TrC4

(
Q̂(k, k)

)
.

Remark 2.3. Note that the equality (2.9) is non-trivial in the whole space (because then we are
not in a finite dimensional setting), and it will have its importance later. Note that this lemma
holds in the case of trace-class operators.

Definition 2.3 (Translation-invariant operators). An operator T on HLΛ is said to be translation-
invariant if it is a multiplication operator in Fourier space. More precisely, there exists a family
(g(k))k∈ΓLΛ

of 4× 4-matrices such that for any ϕ ∈ HLΛ,

T̂ϕ(k) = g(k)ϕ̂(k).

If then one denotes

ǧ(x) :=
(

2π
L

)3/2 ∑
k∈ΓLΛ

g(k)ek(x),

one can easily check that
T (x, y) = (2π)−3/2ǧ(x− y), (2.11)

so that translation-invariant operators are those which act by convolution on HLΛ.

Corollary 2.1. Any translation-invariant operator has a constant density.

Proof. Let T be a translation-invariant operator. Then by (2.8) and (2.11) we have

ρT (x) = TrC4 (T (x, x)) = (2π)−3/2TrC4 (ǧ(0)) = L−3
∑
k∈ΓLΛ

TrC4 (g(k)). (2.12)

Remark 2.4. The last corollary justifies the use of the term translation-invariant for such
operators since their density is uniform. It can also be justified by the fact that such operators
commute with translations.
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Example 2.1. The identity operator ILΛ on HLΛ is a translation-invariant operator, whose kernel
is

ILΛ (x, y) = L−3
∑
k∈ΓLΛ

I4e
ik·(x−y),

where I4 is the identity 4× 4 matrix since∫
TL
ILΛ (x, y)ϕ(y) dy =

(2π)3/2

L6

∑
k,k′∈ΓLΛ

ϕ̂(k′)
∫

TL
eik·(x−y)eik

′·y dy =
(2π)3/2

L3

∑
k∈ΓLΛ

ϕ̂(k)eik·x = ϕ(x).

The density of the identity is thus ρILΛ = 4|ΓLΛ|/L3. We will use the notation

ρLΛ =
ρILΛ
2

=
2|ΓLΛ|
L3

. (2.13)

Definition of operators in the torus. In order to define the restriction of the Hamiltonian
(2.1) to the torus, we have to precise the Dirac operator in the box and to periodize the Coulomb
potential as well as the external potential ϕ.

The Dirac operator was previously defined as

D0 = −iα · ∇+mβ,

where m is the (bare) mass of an electron and α = (α1, α2, α3), β are the Dirac matrices. One
can see that the Dirac operator is a multiplication operator by D0(k) = α ·k+mβ in the Fourier
domain, so that the Dirac operator on the torus will just be the multiplication operator in the
Fourier domain by the matrices (α · k + mβ)k∈ΓLΛ

. The Dirac operator on the torus will be
denoted as DL.

The Coulomb potential |x|−1 which appears for instance in the last term of (2.1) needs to be
periodized. To do so, following [HLS07], we remark that for the usual Fourier transform

|̂ · |−1(k) =
4π
|k|2

,

so that we define the periodized Coulomb potential WL by the formula

WL(x) :=
1
L3

∑
k∈ΓLΛ
k 6=0

4π
|k|2

eik·x + µL2

 ,

where µ > 0 is chosen so that minCLWL = 0.
We will consider an external potential ϕ created by a distribution of charge ν

ϕ = −αν ? | · |−1.

Typically, the distribution of charge can be created by M protons of charge +e placed in positions
(zi)Mi=1 so that we have

ν =
M∑
i=1

eχ(· − zi),
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where χ is a positive smooth function with compact support and with
∫
χ = 1. When protons

are ponctual, we can replace χ by a Dirac distribution, but in reality the charge distribution of
a proton is smooth.

We will not say much here about the living space of ν. We will choose later ν ∈ C, the
Coulomb space defined in section 4.2.2.

We define the external potential in a box by the formula

νL(x) :=
(2π)3/2

L3

∑
k∈ΓLΛ

ν̂(k)eik·x,

which is exactly saying that the Fourier coefficient in k ∈ ΓLΛ of νL ∈ HLΛ is the value in k of the
Fourier transform of ν ∈ HΛ. The corresponding potential is

ϕL(x) := −ανL ? WL(x) = −α
∫
CL

νL(y)WL(x− y) dy.

Finally, we denote by DL(f, f) the periodized Coulomb self-interaction for a charge distribution
f , it is defined by

DL(f, f) :=
∫∫

(TL)2
f(x)f(y)WL(x− y) dxdy =

(
2π
L

)3

(2π)3/2
∑
k∈ΓLΛ

|f̂(k)|2ŴL(k) > 0.

In the box we denote the Dirac operator with potential by DL
ϕ := DL + ϕL, acting on HLΛ.

Fock space, creation and annihilation operators. As we said earlier, QED is a theory
which deals with infinitely many particles. The functional space describing an infinite number
of particles is built on the one-body space HLΛ and is called the Fock space FLΛ , defined as

FLΛ := C⊕
⊕
N>1

N∧
n=1

HLΛ︸ ︷︷ ︸
=:HLΛ(N)

,

where C denotes by convention the 0-body space and HLΛ(N) the N -body fermionic space. The
space HLΛ being finite-dimensional, so is the space FLΛ . Indeed, HLΛ(N) = 0 for N > dim(HLΛ).

Definition 2.4. Let k ∈ ΓLΛ and σ ∈ {1, . . . , 4}. We define the creation operator ψ∗k,σ which
acts on FLΛ by creating a particle in the state εσek. This operator maps HLΛ(N) to HLΛ(N + 1) in
the following way

ψ∗k,σ(ϕ1 ∧ · · · ∧ ϕN ) = (εσek) ∧ ϕ1 ∧ · · · ∧ ϕN .
The adjoint ψk,σ of this operator is called the annihilation operator, it maps HLΛ(N + 1) to
HLΛ(N) by annihilating a particle in the state εσek. They satisfy the classical anticommutation
relation

{ψk,σ,ψ
∗
l,σ′} = δk,lδσ,σ′ . (2.14)

Definition 2.5 (Second-quantized field operator). Let x ∈ R3. We define the second-quantized
field operator ψ(x), which annihilates a particle in position x, as an operator-valued 4-component
vector by the formula

ψ(x)σ =
∑
k∈ΓLΛ

ek(x)ψk,σ, σ = 1, . . . , 4.

The adjoint ψ(x)∗ of this operator creates a particle in position x.

Remark 2.5. Recall that ΓLΛ is finite, hence ψ(x) is perfectly well defined.
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2.2.2 Determination of the QED energy in a box

Formula (2.1) becomes in a box

Hϕ
L :=

∫
TL
ψ(x)∗DLψ(x) dx+

∫
TL
ϕL(x)ρ(x) dx+

α

2

∫∫
(TL)2

ρ(x)ρ(y)WL(x− y) dxdy. (2.15)

Remark 2.6. Note that DLψ is defined as the operator acting on the Fock space

DLψ(x) :=
∑
k∈ΓLΛ

(DLek)(x)ψk,σ =
∑
k∈ΓLΛ

(α · k + β)ek(x)ψk,σ.

Let us compute the expectation value of this Hamiltonian on a Hartree-Fock state Ω with
density matrix P . Let us notice that ψ(x),ψ(x)∗, ρ(x),WL(x) are all bounded functions of x (for
the respective norm of their living space). Hence each term of the Hamiltonian is well defined
and all the following computations are meaningful.

Proposition 2.1. Let Ω be a generalized Hartree-Fock state. Then if γ := P − ILΛ/2 we have

Ω(Hϕ
L) = ELϕ (γ) +

α

8

∫∫
(TL)2

‖ILΛ (x, y)‖2WL(x− y) dxdy, (2.16)

where

ELϕ (γ) = tr(DL
ϕγ) +

α

2
DL(ργ , ργ)− α

2

∫∫
(TL)2

‖γ(y, x)‖2WL(x− y) dxdy. (2.17)

Proof. Kinetic energy. We will first prove that

Ω
(∫

TL
ψ(x)∗DLψ(x) dx

)
= tr(DLP ). (2.18)

By definition, the kinetic energy of the state Ω is (think of ψ∗ as a line vector, ψ as a column
vector, and DL as a matrix)

Ω
(∫

TL
ψ(x)∗DLψ(x) dx

)
=

4∑
σ,σ′=1

∫
TL

Ω
(
ψ(x)∗σD

L
σσ′ψ(x)σ′

)
dx (2.19)

=
4∑

σ,σ′=1

∫∫
(TL)2

Ω
(
ψ(x)∗σD

L,y
σσ′ψ(y)σ′

)
δ(y − x) dxdy,(2.20)

where the notation DL,y is there to keep in mind that DL acts on the y variable in this expression.
Now let us remark that

Ω
(
ψ(x)∗σD

L,y
σσ′ψ(y)σ′

)
= DL,y

σσ′Ω (ψ(x)∗σψ(y)σ′)

= DL,y
σσ′P (y, x)σ′σ,

since DL,y is a differential operator acting only on the y variable and Ω is linear. Now let us
show that

4∑
σ′=1

DL,y
σσ′P (y, x)σ′σ = (DLP )(y, x)σσ, (2.21)
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where the last term is the element (σ, σ) of the kernel matrix of the operator DLP . Indeed, by
definition of the kernel matrix P (y, x), for any ϕ ∈ L2(TL; C4) we have

(Pϕ)(y)σ =
4∑

σ′=1

∫
TL
P (y, x)σσ′ϕ(x)σ′ dx.

Applying the matrix DL to the vector (Pϕ)(y) gives

(DLPϕ)(y)σ =
4∑

σ′′=1

DL,y
σσ′′(Pϕ)(y)σ′′

=
4∑

σ′′,σ′=1

∫
TL
DL,y
σσ′′P (y, x)σ′′σ′ϕ(x)σ′ dx

=
4∑

σ′=1

∫
TL

4∑
σ′′=1

DL,y
σσ′′P (y, x)σ′′σ′︸ ︷︷ ︸

def.
= (DLP )(y,x)σσ′

ϕ(x)σ′ dx

Therefore we have shown (2.21). Now let us insert this result in the equality (2.20). We find

Ω
(∫

TL
ψ(x)∗DLψ(x) dx

)
=

4∑
σ=1

∫∫
(TL)2

(DLP )(y, x)σσδ(y − x) dx dy

=
4∑

σ=1

∫
TL

(DLP )(x, x)σσ dx

=
∫

TL
TrC4

(
DLP (x, x)

)
dx

def.=
∫

TL
ρDLP (x) dx

= tr(DLP ).

We thus have proved the equality (2.18).

External field term. We then prove that

Ω
(∫

TL
ϕL(x)ρ(x) dx

)
=
∫

TL
ϕL(x)(ρP (x)− ρLΛ) dx. (2.22)

The density operator defined in (2.2) can be rewritten thanks to the CAR

ρ(x) =
4∑

σ=1

ψ(x)∗σψ(x)σ − ρLΛ.

Then the expectation value of the external field term in the QED Hamiltonian applied to the
Hartree-Fock state Ω gives

Ω
(∫

TL
ϕL(x)ρ(x) dx

)
=
∫

TL
ϕL(x)Ω(ρ(x)) dx.
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A quick computation leads to

Ω(ρ(x)) =
4∑

σ=1

Ω(ψ(x)∗σψ(x)σ)︸ ︷︷ ︸
=P (x,x)σσ

−ρLΛ Ω(Id)︸ ︷︷ ︸
=1

= TrC4 (P (x, x))− ρLΛ
= ρP (x)− ρLΛ.

Finally, we obtain (2.22).

Interaction term. We finally prove that

Ω

(∫∫
(TL)2

ρ(x)ρ(y)WL(x− y) dx dy

)
=
∫∫

(TL)2
ρP (x)ρP (y)WL(x− y) dx dy

−
∫∫

(TL)2
‖P (y, x)‖2WL(x− y) dxdy

+
∫∫

(TL)2
TrC4

(
ILΛ (x, y)P (y, x)

)
WL(x− y) dxdy

− 2ρLΛ

∫∫
(TL)2

ρP (x)WL(x− y) dxdy + (ρLΛ)2

∫∫
(TL)2

WL(x− y) dxdy. (2.23)

As for the external field term, all we have to do is compute the expression ρ(x)ρ(y):

ρ(x)ρ(y) =
4∑

σ,σ′=1

ψ(x)∗σψ(x)σψ(y)∗σ′ψ(y)σ′ −
4∑

σ=1

ρLΛψ(x)∗σψ(x)σ −
4∑

σ′=1

ρLΛψ(y)∗σ′ψ(y)σ′ + (ρLΛ)2.

(2.24)
Using the CAR we obtain

ψ(x)σψ(y)∗σ′ = δσσ′I
L
Λ (x, y)σσ′ −ψ(y)∗σ′ψ(x)σ,

thus

4∑
σ,σ′=1

ψ(x)∗σψ(x)σψ(y)∗σ′ψ(y)σ′ =
4∑

σ=1

ILΛ (x, y)σσψ(x)∗σψ(y)σ−
4∑

σ,σ′=1

ψ(x)∗σψ(y)∗σ′ψ(x)σψ(y)σ′︸ ︷︷ ︸
=:Aσσ′

.

We can easily deduce the expectation value of the first operator for the state Ω by writing

Ω

(
4∑

σ=1

ILΛ (x, y)σσψ(x)∗σψ(y)σ

)
=

4∑
σ=1

ILΛ (x, y)σσΩ (ψ(x)∗σψ(y)σ)

=
4∑

σ=1

ILΛ (x, y)σσP (y, x)σ,σ

= TrC4

(
ILΛ (x, y)P (y, x)

)
,

since ILΛ (x, y) has zero values off the diagonal.
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To compute the term Ω(Aσσ′), we use the relation written in [BLS94, Eq. (2a.12)], following
from the definition of a Hartree-Fock state:

Ω(Aσσ′) = Ω(ψ(x)∗σψ(y)∗σ′)Ω(ψ(x)σψ(y)σ′)− Ω(ψ(x)∗σψ(x)σ)Ω(ψ(y)∗σ′ψ(y)σ′)
+ Ω(ψ(x)∗σψ(y)σ′)Ω(ψ(y)∗σ′ψ(x)σ). (2.25)

Now let us remark that for any Hartree-Fock state Ω,

Ω(ψ(x)∗σψ(y)∗σ′) = Ω (ψ(x)∗σψ(y)∗σ′) = 0. (2.26)

Indeed, if for instance Ω is a N -body Slater determinant, then ψ(x)∗σψ(y)∗σ′Ω lives in the (N+2)-
body space. Hence it is orthogonal to Ω in the Fock space. This result is also true for any
Hartree-Fock state that is particle-conserving (i.e. a convex combination of states having a
definite number of particles, following [BLS94, p. 12]).

Finally we have

Ω(Aσσ′) = −P (x, x)σσP (y, y)σ′σ′ + P (y, x)σ′σP (x, y)σσ′ .

Moreover, as P ∗ = P ,
P (x, y)σσ′ = P (y, x)σ′σ,

hence,
4∑

σ,σ′=1

Ω(Aσσ′) = −ρP (x)ρP (y) + ‖P (y, x)‖2.

Furthermore, since WL(x − y) = WL(y − x) we compute the second and third term of the
right-hand side of (2.24) as

Ω

(∫∫
(TL)2

[
4∑

σ=1

ρLΛψ(x)∗σψ(x)σ +
4∑

σ′=1

ρLΛψ(y)∗σ′ψ(y)σ′

]
WL(x− y) dx dy

)
=

2ρLΛ

∫∫
(TL)2

ρP (x)WL(x− y) dx dy.

Regrouping the terms we obtain (2.23).

Remark 2.7. The relation (2.25) is not written as such in [BLS94]. It is expressed in terms of
ψ(f),ψ(f)∗ instead of ψ(x),ψ(x)∗. The operator ψ(f)∗ creates a particle in the state f while
the operator ψ(x)∗ creates a particle in the position x (see also [Tha92, Notes of Chap. 10]).
The latter is usually used by physicists while mathematicians prefer the former, mainly because
the operators ψ(x),ψ(x)∗ are often ill-defined. Here, they perfectly make sense since we work in
a box with a Fourier cutoff so that the underlying one-body space is finite-dimensional. A proof
that (2.25) is equivalent to the relation given in [BLS94] can be found in appendix B.2.

Remark 2.8. The relation (2.25) is one of the characteristics of Hartree-Fock states. We have
defined the one-body density matrix (which is a 2-point function, acting on the one-body space h)
for Ω, but we could as well define the N -body density matrix (2N -point function, acting on the
N -body space h∧N ). For example, the 2-body density matrix of Ω acting on h ∧ h is defined as
(see [Sol07, sect. 8.1])

γ(2)(x, y, z, t)σ1σ2σ3σ4 := Ω
(
ψ(x)∗σ1

ψ(z)∗σ3
ψ(y)σ2ψ(t)σ4

)
.
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The key property of Hartree-Fock states is that all their N -body density matrices can be expressed
in terms of the one-body matrix, the formula being explicit [BLS94, Eq. (2a.11)]. We see that
(2.25) uses nothing but the relation which gives the 2-body density matrix in terms of the one-
body density matrix of Ω. Roughly speaking, it implies that each term of the Hamiltonian applied
to such a state Ω can be written in terms of the one-body density matrix. That is why we talk
about mean-field models, the energy only depending on the “density” of the particles and not on
their individual behavior.

Remark 2.9. We may also study a more general class of Hartree-Fock states for which the term
in (2.26) is non-zero. It induces a matrix called the pairing matrix. Fortunately, the energy
term involving this pairing matrix would be positive in our case, so that the pairing matrix will
automatically vanish for a ground state (see [BLS94, Theorem 2.11]). Hence it makes sense to
neglect pairing from the beginning.

Finally, we have the expression of the total energy in a box of a Hartree-Fock state Ω with
density matrix P :

EQED
L,ϕ (P ) := Ω (Hϕ

L) = tr(DLP )−
∫

TL
ϕL(x)(ρP (x)−ρLΛ) dx+

α

2

∫∫
(TL)2

ρP (x)ρP (y)WL(x−y) dx dy

− α

2

∫∫
(TL)2

‖P (y, x)‖2WL(x− y) dxdy +
α

2

∫∫
(TL)2

TrC4

(
ILΛ (x, y)P (y, x)

)
WL(x− y) dxdy

− αρLΛ
∫∫

(TL)2
ρP (x)WL(x− y) dxdy +

α

2
(ρLΛ)2

∫∫
(TL)2

WL(x− y) dxdy. (2.27)

Notice that each term is well-defined since we work in a box with the cutoff Λ.
As mentioned before, our goal is to express this energy with respect to the variable γ :=

P − ILΛ/2. To do so, we have the relations

ρLΛ = ρILΛ /2, tr(DLILΛ ) = 0,

the last relation holding because the Pauli matrices are traceless. Hence we have

tr(DLP )−
∫

TL
ϕL(x)(ρP (x)− ρLΛ) dx = tr(DLγ)−

∫
TL
ϕL(x)ργ(x) dx,

as well as∫∫
(TL)2

ρP (x)ρP (y)WL(x−y) dxdy =
∫∫

(TL)2
ργ(x)ργ(y)WL(x−y) dxdy−(ρLΛ)2

∫∫
(TL)2

WL(x−y)

+ 2ρLΛ

∫∫
(TL)2

ρP (x)WL(x− y) dxdy, (2.28)

and
‖P (y, x)‖2 = ‖γ(y, x)‖2 − 1

4
‖ILΛ (x, y)‖2 + TrC4

(
ILΛ (x, y)P (y, x)

)
.

Fortunately, the expression of the energy is simplified as the appearing terms cancel the existing
ones. We thus have proved Proposition 2.1.

The last term of (2.16) behaves like L3 when L→∞ so that we can ignore it for two reasons.
First, when L is fixed, the last term in (2.16) is a constant so that the minimizers of Ω(Hϕ

L) are
the same as those of ELϕ (γ). Secondly, when looking at the thermodynamic limit of the energy
per unit volume ELϕ (γ)/L3 the last term of (2.16) behaving like L3 converges towards a constant.
We can discard it because we will then look at differences of energies in the whole space, so that
this constant will disappear.
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2.3 Main strategy

Since we have computed the energy of a generalized Hartree-Fock state Ω in a box as the ex-
pression (2.17) depending only on its renormalized density matrix γ, we are now able to state
the minimization problem we will study.

First of all, in [HLS07] Hainzl, Lewin and Solovej minimized the energy ELϕ (γ) while in this
study we will neglect the last term of (2.17) that is the exchange term. It will dramatically
simplify some of the proofs of the theorems but we will explain quickly how to deal with the full
model as remarks. However, many qualitative properties of this so-called reduced model (without
exchange term) are the same as for the full model. The reference energy we will study is thus

ELϕ(γ) := tr(DL
ϕγ) +

α

2
DL(ργ , ργ).

We will minimize this energy over the space

GLΛ :=
{
γ ∈ L(HLΛ), γ∗ = γ, −I

L
Λ

2
6 γ 6

ILΛ
2

}
,

where L(HLΛ) denotes the set of the linear operators on HLΛ. The set GLΛ is actually the convex hull
of the set {P − ILΛ/2, P orthogonal projector} which characterizes usual Hartree-Fock states.

Remark 2.10. Taking the convex hull of this set is not a simple technical necessity. Indeed,
GLΛ actually corresponds to the set of the one-body density matrices of quasi-free states which are
particle-conserving [BLS94, Theorem 2.3].

We thus study the following minimzation problem

EL(ϕ) = inf
γ∈GLΛ

ELϕ(γ). (2.29)

We study the case with no external field (ϕ = 0) and only add an external electric field in
the study of atoms and molecules. The study of the case ϕ = 0 is crucial since one of the main
challenge of QED is to give a sense to the minimisation of the energy of QED in the whole space,
which is often unbounded from below. To remove this divergence, we follow the idea of Chaix
and Iracane [CI89] who choose to measure the energy of any state relatively to the energy of a
reference. Of course, one has to choose a relevant reference state. Following again [HLS07], the
reference state we choose is the state of lowest energy without external field, which we call the
free vacuum.

We first define this free vacuum in a box, as the unique minimizer of EL(0), which we call
γ0
L. To find the free vacuum in the whole space, we then look for the limit of EL0 (γ)/L3 for a

fixed translation-invariant γ, as the free vacuum is supposed to be. This limit energy is defined
as the energy per unit volume in the whole space. The unique minimizer γ0 of this energy is the
free vacuum we are looking for. We will see that γ0

L → γ0 as L→∞ in a certain sense, so that
γ0 can be seen as the free vacuum in the whole space also as the limit of the free vacuum in a
box.

3 Definition of the free vacuum

Recall that the free vacuum is defined as the (unique) minimizer of the reduced Hartree-Fock
energy without external field.
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3.1 The free vacuum in a box

Theorem 3.1. Let L,Λ,m > 0. Then EL0 has a unique minimizer on GLΛ which is γL0 :=
PL0 − ILΛ/2 where PL0 = χ(−∞;0)(D0

L) is the negative spectral projector of the Dirac operator in a
box. The operator γL0 is called the free vacuum in a box.

Proof. By lemma A.1, the operator γL0 defined in the theorem verifies

tr(D0
Lγ

L
0 ) = min

γ∈GLΛ

tr(D0
Lγ), (3.1)

We have

γL0 = PL0 − ILΛ/2 =
PL0 − (PL0 )⊥

2
.

In the Fourier domain, this is a multiplication operator by

γL0 (k) = − D0
L(k)

2‖D0
L(k)‖

.

In the sense of operators, this implies

γL0 = − sgn(D0
L)

2
.

The Dirac matrices being traceless, we have TrC4

(
γL0 (k)

)
= 0 and thus ργL0 = 0 by the equality

(2.12). For any γ ∈ GLΛ we have

EL0 (γ) = tr(D0
Lγ) +

α

2
DL(ργ , ργ)︸ ︷︷ ︸

>0

(3.2)

> tr(D0
Lγ) (3.3)

> tr(D0
Lγ

L
0 ) = EL0 (γL0 ) (because ργL0 ≡ 0). (3.4)

The uniqueness of γL0 comes from its uniqueness as minimizer of (3.1). Indeed, for any other
minimizer γ of EL0 , we have EL0 (γ) = EL0 (γL0 ) so that the inequality in (3.4) is in fact an equality.
We thus have tr(D0

Lγ) = tr(D0
Lγ

L
0 ) = minΓ∈ΓLΛ

tr(D0
LΓ). The operator D0

L being invertible, the
minimizer in (3.1) is unique so that γ = γL0 . The free vacuum in a box is thus unique.

Remark 3.1. The model including the exchange term is much more complicated because the
energy is not convex anymore. The proof actually uses the existence of a minimizer in the
whole space. Moreover, the minimizer is not PL0 anymore and the minimizer satisfies a self-
consistent equation. It is also a projector but of a Dirac operator D0

L modified by its own presence.
Physically, it can be explain by the interaction between these charged virtual particles.

3.2 The free vacuum in the whole space

To define the free vacuum in the whole space, we first have to find the energy in the whole space.
We want to define this energy as the limit of the energy per unit volume in a box as its size
grows. We have to choose a test γ defined in the whole space, confine it in a box in a certain
sense and determine the limit energy of this restrained operator in terms of γ. First, we have
to precise the functional setting in the whole space to then define γ. The one-body space in the
whole space is

HΛ :=
{
ϕ ∈ L2(R3; C4), supp(ϕ̂) ⊂ B(0,Λ)

}
.
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As we have seen in a box, the free vacuum is translation-invariant. Our test γ will then be chosen
as translation-invariant. In the whole space it still means that it is a multiplication operator in
the Fourier space. If γ is translation-invariant and self-adjoint, we will denote by γ(p) the 4× 4
self-adjoint matrix such that for any ϕ ∈ HΛ we have

γ̂ϕ(p) = γ(p)ϕ̂(p), p ∈ B(0; Λ).

Recall that we have to keep the constraint −IΛ/2 6 γ 6 IΛ/2 as it was the case in a box, where
IΛ denotes the identity operator of HΛ. The energy in the whole space will then be minimized
over the set

AΛ := {γ translation-invariant on HΛ, γ∗ = γ, −IΛ/2 6 γ 6 IΛ/2} .

For γ ∈ AΛ, the map γ : p 7→ γ(p) belongs to the space

“ÂΛ” = {γ ∈ L∞(B(0; Λ),S4(C)), −I4/2 6 γ 6 I4/2} ,

where S4(C) denotes the set of the 4 × 4 self-adjoint matrices. For γ ∈ AΛ, its density is still
well-defined and constant, passing the formula (2.12) to the limit L→∞ with a Riemann sum.
We have then

ργ(x) ≡ (2π)−3

∫
B(0;Λ)

TrC4 (γ(p)) dp.

It is easy to confine a translation-invariant operator in a box since it is a multiplication operator
in the Fourier domain. For such a γ, we define the operator γL ∈ GLΛ by

γL(k) = γ(k), k ∈ ΓLΛ.

For our γ test we will moreover assume that TrC4 (γ(p)) = 0, ∀p ∈ B(0; Λ), as it is the case for
the free vacuum in the box and will be the case for the free vacuum in the whole space as we
will see. For such a γ we have ργL ≡ 0 so that

EL0 (γL) = tr(D0
LγL) =

∑
k∈ΓLΛ

TrC4

(
D0
L(k)γL(k)

)
.

Hence the limit energy per unit volume is

T (γ) := lim
L→∞

EL0 (γ)
L3

=
1

(2π)3

∫
B(0;Λ)

TrC4

(
D0(p)γ(p)

)
dp. (3.5)

Theorem 3.2. Assume that Λ > 0. Then T possesses a unique minimizer γ0 = P 0 − IΛ/2 on
AΛ defined by

P 0 := χ(−∞;0)(D0). (3.6)

This minimizer is called the free vacuum. It is a translation-invariant operator with vanishing
density of charge: ργ0 ≡ 0.

Proof. The proof is just an application of the lemma A.1. Indeed, for each p ∈ B(0; Λ) the
unique minimizer of Γ 7→ TrC4

(
D0(p)Γ

)
is

Γ = − D0(p)
2‖D0(p)‖

.

Hence, γ0 is the unique global minimizer of T over AΛ. The same argument as in the theorem
in the box applies to prove that ργ0 ≡ 0.

22



Remark 3.2. We can see here the importance of taking commutators in formula (2.3). With
these commutators, the free vacuum is not charged and is translation-invariant, which fits to the
idea of Dirac. That is also why these commutators act as a kind of renormalization.

Remark 3.3. In the model with exchange term, we can do the same remark as in the box and
obtain the free vacuum γ0 which satisfies the self consistent equation

γ0 = − sgn(D0)
2

D0 = D0 − αγ
0(x,y)
|x−y| .

We have again the modified Dirac operator D0 which is the sum of the usual Dirac operator and
a term of Coulombian potential induced by the vacuum.

3.3 The thermodynamic limit

The thermodynamic limit is stated both to justify and to reinforce the choice of γ0 as the unique
free vacuum.

Theorem 3.3. Assume that Λ > 0. Then we have

lim
L→∞

EL0 (γL0 )
L3

= min
AΛ
T = T (γ0).

In words, the energy per unit volume of the free vacuum in a box converges towards the energy
per unit volume of the free vacuum in the whole space. Moreover, γL0 converges towards γ0 in
the following sense:

lim
L→∞

‖γL0 − γ0‖S∞(HLΛ) = lim
L→∞

sup
k∈ΓLΛ

|γL0 (k)− γ0(k)| = 0.

Proof. Both limits are true because we have for all k ∈ ΓLΛ,

γL0 (k) = γ0(k).

The second limit is then obvious while the first one is proved by the same limit as formula
(3.5).

Remark 3.4. In this case, the thermodynamic limit is trivial because we know explicitly the
minimizer of the energy per unit volume. In the HF case with exchange term, this minimizer
satisfies a self-consistent equation so that the thermodynamic limit becomes non-trivial. However,
it was shown in [HLS07] that the free vacuum is indeed unique.

We have now built our reference operator, the free vacuum γ0. We are thus able to derive
the QED energy in the Hartree-Fock approximation.

4 Bogoliubov-Dirac-Fock energy

4.1 A formal computation

We want to measure the energy of any state γ on the whole space relatively to the one of the free
vacuum γ0. The formula (2.17) gives the energy in a box. We can deduce from this expression
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the formula for the reduced HF energy in the whole space ErHF
ν by taking a formal limit L→∞.

It leads to

ErHF
ν (γ) = tr(D0γ)− α

∫∫
ργ(x)ν(y)
|x− y|

dxdy +
α

2

∫∫
ργ(x)ργ(y)
|x− y|

dxdy. (4.1)

We have already said that this energy does not make sense. The so-called Bogoliubov-Dirac-Fock
(BDF) energy introduced in [HLS05a, HLS05b, HLS09, HLS07] measures the energy EBDF

ν of a
state γ relatively to the (infinite) one of γ0. It depends on the variable Q = γ − γ0 and can be
derived formally as

“EBDF
ν (Q) = ErHF

ν (γ)− ErHF
ν (γ0) (4.2)

= tr(D0Q)− α
∫∫

ρQ(x)ν(y)
|x− y|

dxdy +
α

2

∫∫
ρQ(x)ρQ(y)
|x− y|

dxdy”. (4.3)

Remark 4.1. The expression of this energy can be rigorously justified by a thermodynamic limit.
This formal computation enables us to understand better the issues raised by this energy.

The only difference between this energy and the reduced HF energy (4.1) is the variable which
now is Q = γ − γ0. The issue is to find the right space where Q is supposed to live. One of the
problems we had with the reduced HF energy was that the main variable γ was never compact.
Here, Q can (and will) be compact. Moreover, the Fourier cutoff Λ allows the last terms of (4.3)
to be well-defined if Q is regular enough.

However, there is a crucial subtility in the choice of the functional setting for EBDF
ν . One may

be tempted to choose Q in the trace-class. Indeed, the BDF energy is completely well-defined on
the trace-class. The issue is that its minimizers are never trace-class [GLS09, Theorem 1] and
this fact is the origin of the well-known charge renormalization in QED.

We thus have to find a larger class of compact operators where the BDF energy is well-defined.

4.2 Functional setting for the BDF energy

In this section we introduce mathematical tools useful to define the right functional space for
EBDF
ν .

4.2.1 The P 0-trace class

We said that the trace-class S1(HΛ) was not the right set of compact operators for the minimisa-
tion of the BDF energy. The right space is actually a subspace of the Hilbert-Schmidt operators
space S2(HΛ), which is larger than S1(HΛ). Recall that these spaces are defined by, following
for instance [RS72, VI.6]:

Sp(HΛ) = {A ∈ L(HΛ), tr(|A|p) <∞} , |A| =
√
A∗A,

where L(HΛ) denotes the space of all linear operators on HΛ.

Definition 4.1. Let A be an Hilbert-Schmidt operator on HΛ. We say that A is P 0-trace class,
where P 0 is defined on (3.6), if A++ := (1− P 0)A(1− P 0) and A−− := P 0AP 0 are both trace-
class. The set of all P 0-trace class operators on HΛ is denoted by SP 0

1 (HΛ). We define the
P 0-trace of A by

trP 0(A) := tr(A++) + tr(A−−). (4.4)

It is a Banach space endowed with the norm

‖A‖1;P 0 := ‖A++‖S1(HΛ) + ‖A−−‖S1(HΛ) + ‖A+−‖S2(HΛ) + ‖A−+‖S2(HΛ), (4.5)

where A+− := (1− P 0)AP 0 and A−+ := P 0A(1− P 0).
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Remark 4.2. The P 0-trace actually measures the charge of a state Ω with density matrix P .
verifying Q := P −P 0 ∈ S2(HΛ) in the Fock space built upon P 0 (see for instance [HLS05b]). If
we denote by Q the charge operator, defined for instance in [HLS05a, HLS05b], we have

Ω(Q) = trP 0(Q),

so that the choice of the P 0-trace is not arbitrary.

Remark 4.3. If A is trace-class, then A is P 0-trace class and tr(A) = trP 0(A).

We also define a weak topology on SP 0

1 (HΛ) such that

Qn ⇀ Q (SP 0

1 (HΛ))⇔

 Qn ⇀ Q (S2)
Q++
n ⇀ Q++ (S1)

Q−−n ⇀ Q−− (S1)
, (4.6)

where the weak topology on S1 is defined as An ⇀ A if tr(AnK)→ tr(AK) for all K ∈ S∞(HΛ)
the set of compact operators. We have used the notation An ⇀ A for the weak convergence.

4.2.2 The Coulomb space

While the P 0-trace class will be used to define the kinetic energy of a state, the other terms of
the energy will be defined with the Coulomb space.

Definition 4.2. Let f ∈ S ′ : R3 → R a function such that f̂ is measurable. We define its
Coulomb energy by

D(f, f) := 4π
∫

R3

|f̂(k)|2

|k|2
dk. (4.7)

We then define the Coulomb space C as

C := {f, D(f, f) <∞} .

It is a Hilbert space endowed with the scalar product

D(f, g) = 4π
∫

R3

f̂(k)ĝ(k)
|k|2

dk.

We denote
‖f‖C := D(f, f)1/2.

Remark 4.4. Notice that if f ,g are smooth enough (in H1(R3) for instance) we find the usual
physical definition of the Coulomb energy between two charge distributions f and g

D(f, g) =
∫∫

R3×R3

f(x)g(y)
|x− y|

dxdy.

Any operator Q ∈ S2(HΛ) has an integral kernel operator [RS72, Theorem VI.23] denoted by
Q(x, y). Its Fourier transform Q̂(p, q) being supported in B(0; Λ)×B(0; Λ), the function Q(x, y)
is smooth so that the density ρQ of Q is well-defined as

ρQ(x) := TrC4 (Q(x, x)).
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In the Fourier domain one has the formula

ρ̂Q(k) = (2π)−3/2

∫
|p+k/2|6Λ
|p−k/2|6Λ

TrC4

(
Q̂(p+ k/2, p− k/2)

)
dp.

This last formula actually shows that ρ̂Q is in L2(B(0; 2Λ)), so that ρQ is in L2(R3) as well.
We now have the useful result proved in [HLS09]:

Lemma 4.1. The map Q ∈ SP 0

1 (HΛ) 7→ ρQ ∈ C ∩L2 is continuous. More precisely, there exists
a constant C(Λ) so that

∀Q ∈ SP 0

1 (HΛ), ‖ρQ‖L2 +D(ρQ, ρQ)1/2 6 C(Λ)‖Q‖1;P 0 .

4.3 Properties of the BDF energy

We are now able to write rigorously the expression of the BDF energy

Eν(Q) := EBDF
ν (Q) = trP 0(D0Q)− αD(ρQ, ν) +

α

2
D(ρQ, ρQ), (4.8)

with Q belonging to the variational set

K :=
{
Q ∈ SP 0

1 (HΛ), Q∗ = Q, −P 0 6 Q 6 1− P 0
}
. (4.9)

Using lemma 4.1 and the boundedness of D0 on HΛ, we see that Eν is well-defined on K.

Proposition 4.1. The application Eν is coercive and weakly lower semi-continuous (wlsc) on
K.

Proof. To prove that Eν is coercive on K we just remark that for any Q ∈ K,

−αD(ρQ, ν) +
α

2
D(ρQ, ρQ) =

α

2
D(ρQ − ν, ρQ − ν)− α

2
D(ν, ν) > −α

2
D(ν, ν),

so that
Eν(Q) > trP 0(D0Q)− α

2
D(ν, ν). (4.10)

We then have the following lemma

Lemma 4.2. The application Q ∈ SP 0

1 (HΛ) 7→ trP 0(D0Q) is coercive.

Proof. Let (Qn) be a sequence in K such that ‖Qn‖1;P 0 → ∞. According to the definition of
the norm ‖ · ‖1;P 0 , it means that either ‖Q−−n ‖S1 ,‖Q++

n ‖S1 ,‖Q+−
n ‖S2 , or ‖Q−+

n ‖S2 tend to ∞.
If ‖Q−−n ‖S1 →∞ or ‖Q++

n ‖S1 →∞, since

trP 0(D0Qn) = tr(|D0|(Q++
n −Q−−n )),

and |D0| > Id, Q++
n > 0 > Q−−n because of the condition −P 0 6 Q 6 1− P 0, we have

trP 0(D0Qn) > ‖Q−−n ‖S1 + ‖Q++
n ‖S1 →∞.

If ‖Q+−
n ‖S2 or ‖Q−+

n ‖S2 →∞, we remark that

‖Q+−
n ‖2S2

+ ‖Q−−n ‖2S2
= ‖(Q2

n)−−‖S1

‖Q−+
n ‖2S2

+ ‖Q++
n ‖2S2

= ‖(Q2
n)++‖S1 ,
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and that
‖Q2

n‖S1 = ‖(Q2
n)++‖S1 + ‖(Q2

n)−−‖S1 ,

so that ‖Q+−
n ‖S2 or ‖Q−+

n ‖S2 →∞⇒ ‖Q2
n‖S1 →∞. Finally,

trP 0(D0Qn) = tr(|D0|(Q++
n −Q−−n )) > tr(|D0|Q2

n) > ‖Q2
n‖S1 →∞.

We thus have proved the lemma.

The lemma and the inequality (4.10) imply the coercivity of Eν .
The map Q ∈ SP 0

1 (HΛ) 7→ α
2D(ρQ − ν, ρQ − ν) − α

2D(ν, ν) is clearly convex and strongly
continuous by lemma 4.1 so that it is weakly lower semi-continuous on SP 0

1 (HΛ).
We just have to prove that lim inf trP 0(D0Qn) > trP 0(D0Q) when Qn ⇀ Q.

Lemma 4.3. Let (An) be a sequence of positive trace-class operators converging weakly towards A
in the trace-class. Then lim inf tr(An) > tr(A), that is the trace is weakly lower semi-continuous
over the set of positive trace-class operators.

Proof. Since An is compact we can write tr(An) =
∑
i λ

n
i , where the (λni ) are the positive

eigenvalues of An. Since they are all positive, we can choose that λn1 > λn2 > . . .. We have thus
the formula

λn1 = sup
ϕ
〈Anϕ,ϕ〉.

Let ϕ be such that 〈Aϕ,ϕ〉 = λ1. Then we have

λn1 > 〈Anϕ,ϕ〉 = tr(An |ϕ〉〈ϕ|︸ ︷︷ ︸
compact

)→ tr(A|ϕ〉〈ϕ|) = λ1,

by definition of the weak convergence (4.6). Consequently,

lim inf λn1 > λ1,

and we have the same formula for each λni by the min-max formula. Then,

lim inf tr(An) > tr(A),

and the lemma is proved.

We apply the lemma to the sequences (|D0|1/2Q++
n |D0|1/2) and (−|D0|1/2Q−−n |D0|1/2) which

are both sequences of positive operators which verify

trP 0(D0Qn) = tr(|D0|1/2Q++
n |D0|1/2) + tr(−|D0|1/2Q−−n |D0|1/2).

By the definition of weak convergence, Qn ⇀ Q implies that Q++
n ⇀ Q++ in S1(HΛ), and since

|D0| is bounded, |D0|1/2Q++
n |D0|1/2 ⇀ |D0|1/2Q++|D0|1/2 as well. Applying the lemma we find

that

lim inf trP 0(D0Qn) = lim inf
(

tr(|D0|1/2Q++
n |D0|1/2) + tr(−|D0|1/2Q−−n |D0|1/2)

)
> tr(|D0|1/2Q++|D0|1/2) + tr(−|D0|1/2Q−−|D0|1/2) = trP 0(D0Q),

and Eν is thus weakly lower semi-continuous.
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Corollary 4.1. The energy Eν is bounded from below since we have

Eν(Q) +
α

2
D(ν, ν) > 0, (4.11)

from the equation (4.10).

Remark 4.5. This corollary is exactly what we were looking for: a bounded-below energy, which
was not trivial to find in QED.

Remark 4.6. If ν = 0, we remark that E0 > 0 so that Q = 0, that is P = P 0, is the unique
minimizer of E0. In this sense, we can also justify the choice of P 0 as the free vacuum.

Corollary 4.2. The functional Eν has a minimizer over K, called the polarized vacuum.

Proof. The energy Eν being wlsc and the set K being convex and strongly closed hence weakly
closed, the existence of such a minimizer is completely straghtforward.

Remark 4.7. In the full HF model with the exchange term, the existence of a polarized vacuum
still holds by proving that the energy is also wlsc. However, the exchange term being not convex,
the proof is much more complicated and uses concentration-compactness methods to prove that
any charge escaping to infinity has a positive energy. It relies on the fact that the exchange term
can actually be controlled by the kinetic energy.

5 Existence of atoms and molecules for the reduced model

The study of the existence of atoms and molecules consists in minimizing the energy Eν on charge
sectors. We have already seen that the charge of a Q ∈ K is given by trP 0(Q). So that when one
wants to study a system with a charge −eN , one has to minimize Eν over the N -charge sector

K(N) := {Q ∈ K, trP 0(Q) = N} . (5.1)

We note

Eν(N) := inf
Q∈K(N)

Eν(Q) (5.2)

The main problem occuring with this model is that K(N) is not weakly closed (or else a
minimizer would exist for any N , but the contrary has been proved in [GLS09]). Indeed, a
minimizing sequence may gain or lose charge at the limit. Plus, even if the reduced model is
not physical, one can argue that an atom cannot have an arbitrary charge because of the limited
binding forces of a nucleus. Thus, the existence of a minimizer in a certain charge domain will
depend on a binding condition as we will see.

This work has been done in [HLS09] for the full-model. In this study we will do the same for
the reduced model but we will moreover prove the thermodynamic limit for this model, which
has not been done yet.

5.1 The existence theorem

We prove the existence theorem as it is done in [HLS09, Theorem 1] because some key tools for
the proof will be useful for the thermodynamic limit.
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Theorem 5.1. Let Λ > 0, ν ∈ C, and q ∈ R. The following statements are equivalent:
(i) ∀k ∈ R \ {0}, Eν(q) < Eν(q − k) + E0(k)
(ii) Any minimizing sequence (Qn)n>1 for Eν(q) is precompact in K and converges up to a

subsequence towards a minimizer of Eν(q).

Remark 5.1. This type of condition is usual in the study of atoms and molecules. In non-
relativistic theory, there is the same kind of result which is the famous Hunziker-Von Winter-
Zhislin (HVZ) theorem [Hun66, Van64, Zhi60]. The HVZ condition (i) basically says that an
atom is stable if it is energically more favorable to have all the electrons bound to the nucleus
than to have a charge k fleeing to infinity while a charge q − k stays near the nucleus.

Remark 5.2. The concentration-compactness inequality

Eν(q) 6 Eν(q − k) + E0(k)

is always true, as proved in [HLS09, Prop. 8]. This kind of inequality is usual in concentration-
compactness methods developped by P.L. Lions [Lio84].

Proof. We only prove (i)⇒(ii), the other implication (proved in [HLS09, Prop. 8]) being usual
in concentration-compactness methods with a problem at infinity which is translation-invariant.
We first prove a criterium for the strong convergence of minimizing sequences.

Lemma 5.1. Let (Qn) be a minimizing sequence for Eν(q) such that Qn ⇀ Q weakly in K.
Then Qn → Q strongly in K if and only if trP 0(Q) = q.

Proof. By definition of a minimizing sequence we have lim Eν(Qn) = Eν(q). If trP 0(Q) = q then
Q becomes eligible for Eν(q) and since Eν is wlsc on K we have

Eν(q) 6 Eν(Q) 6 lim inf Eν(Qn) 6 lim sup Eν(Qn) = lim Eν(Qn) = Eν(q),

so that Q is a minimizer of Eν(q) and all these inequalities are equalities. By the proof of the
wls-continuity of Eν it implies that

trP 0(D0Qn)→ trP 0(D0Q) (5.3)

because each of the terms of the energy is wlsc. First, let us show that Qn → Q in S2, that is
tr(Q2

n)→ tr(Q2) (because we already have Qn ⇀ Q in S2).
The energy being coercive, the sequence (Qn) is bounded in S2 so that its kernel (Qn(x, y))

is bounded in L2(R3 × R3). Thanks to the cutoff in the Fourier domain, it is also bounded in
H1(R3 × R3) so that we can suppose that, at least up to a subsequence, Qn(x, y) → Q(x, y)
strongly in L2

loc(R3 × R3).
We now introduce two smooth functions χ, ξ ∈ C∞([0;∞); [0; 1]) such that χ2 + ξ2 = 1 which

will be used to “localize” the sequence (Qn) to exploit its local convergence. We define them
as χ(x) = 1 when x ∈ [0; 1] and χ(x) = 0 when x > 2. We then define χR(x) := χ(|x|/R) and
ξR(x) := ξ(|x|/R) for x ∈ R3. We note χR, ξR the multiplication operators by χR, ξR acting on
HΛ. We have

tr(Q2
n) = tr(χRQ2

nχR) + tr(ξRQ2
nξR)

and
lim
n→∞

tr(χRQ2
nχR) = tr(χRQ2χR)

by the local strong convergence of (Qn(x, y)). We also have

lim
R→∞

tr(χRQ2χR) = tr(Q2)
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by the dominated convergence theorem. It thus remains to prove that tr(ξRQ2
nξR)→ 0 to have

tr(Q2
n)→ tr(Q2). That is where the convergence (5.3) is useful. Indeed, we have

trP 0(D0Qn) = tr(|D0|(Q++
n −Q−−n ))

and
tr(|D0|Q++

n ) = tr(χR|D0|Q++
n χR) + tr(|D0|ξRQ++

n ξR) + tr([ξR, |D0|]Q++
n ξR).

Since (Q++
n ) is bounded in S1, we have∣∣tr([ξR, |D0|]Q++

n ξR)
∣∣ 6 C‖[ξR, |D0|]‖B(HΛ).

It has been proven in [HLS05b, Lemma 1] that

‖[ξR, |D0|]‖B(HΛ) 6
C ′

R
.

We have

trP 0(D0Qn) = tr(χR|D0|(Q++
n −Q−−n )χR) + tr(|D0|ξR(Q++

n −Q−−n )ξR)

+ tr([ξR, |D0|](Q++
n −Q−−n )ξR),

so that

| tr([ξR, |D0|](Q++
n −Q−−n )ξR)|︸ ︷︷ ︸

6C′′/R

+| trP 0(D0Qn)− tr(χR|D0|(Q++
n −Q−−n )χR)|

> | tr(|D0|ξR(Q++
n −Q−−n )ξR)|

and
| tr(|D0|ξR(Q++

n −Q−−n )ξR)| > tr(|D0|ξRQ2
nξR) > tr(ξRQ2

nξR) > 0,

by the Bach inequality (A.1) and the fact that |D0| > 1. Taking now the limit n → ∞ in this
inequality, where we have already seen that

lim
n→∞

tr(χR|D0|(Q++
n −Q−−n )χR) = tr(χR|D0|(Q++ −Q−−)χR),

we have

C ′′/R+ | trP 0(D0Q)− tr(χR|D0|(Q++ −Q−−)χR)| > lim sup
n→∞

tr(ξRQ2
nξR) > 0.

Taking now the limit R→∞ we finally find that

lim
R→∞

lim sup
n→∞

tr(ξRQ2
nξR) = 0.

The sequence (Qn) thus converges towards Q in S2. We now have to prove that Q++
n → Q++ and

Q−−n → Q−− strongly in S1. We just remark that the limit (5.3) follows from the weakly lower
semi-continuity of the map A 7→ tr(A) for positive operators. The proof of this fact in lemma
4.3 implies that actually, if we denote by λi(A) the i-th greatest eigenvalue of the trace-class
positive operator A,

λi(|D0|1/2Q++
n |D0|1/2) → λi(|D0|1/2Q++|D0|1/2) (n→∞) (5.4)

λi(|D0|1/2Q−−n |D0|1/2) → λi(|D0|1/2Q−−|D0|1/2) (n→∞) (5.5)

We now use the following lemma proved in [Sim79, Theorem 2.19]
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Lemma 5.2 (Grümm’s convergence theorem). Fix p <∞. Suppose that An → A and A∗n → A∗

in the strong operator topology and ‖An‖Sp → ‖A‖Sp . Then ‖An −A‖Sp → 0.

We apply this lemma to the sequences (|D0|1/2Q++
n |D0|1/2) and (|D0|1/2Q−−n |D0|1/2) which

are sequences of positive self-adjoint operators. Since Qn → Q in S2 we also have

|D0|1/2Q++
n |D0|1/2 → |D0|1/2Q++|D0|1/2

in S2 and since the imbedding S2 ↪→ S∞ is continuous, we also have the convergence in S∞,
and the first hypothesis of Grümm’s lemma is verified. Moreover, the limit (5.4) implies that

‖|D0|1/2Q++
n |D0|1/2‖S1 → ‖|D0|1/2Q++|D0|1/2‖S1

since all the eigenvalues are positive. Hence, we have by Grümm’s lemma

‖|D0|1/2(Q++
n −Q++)|D0|1/2‖S1 → 0.

Finally, by the continuity of the map A ∈ S1 7→ KA ∈ S1 for K bounded operator,

‖Q++
n −Q++‖S1 6 ‖|D0|−1/2‖2op‖|D0|1/2(Q++

n −Q++)|D0|1/2‖S1 → 0.

We do the same for Q−−n and we finally have Qn → Q in SP 0

1 .
The other implication is trivial since the strong convergence implies the conservation of the

charge.

We end the proof by contradiction. We assume that there exists a minimizing sequence (Qn)
for Eν(q) which not precompact in SP 0

1 (HΛ). Since Eν(Qn) → Eν(q) and Eν is coercive, the
sequence (Qn) is bounded in SP 0

1 (HΛ) so that we can assume that Qn ⇀ Q weakly and that
Qn 9 Q strongly. According to lemma 5.1, it is equivalent to the fact that trP 0(Q) 6= q. We set
trP 0(Q) = q − k with k ∈ R \ {0} and then prove that this implies

Eν(q) > Eν(q − k) + E0(k),

which contradicts (i).
The idea is to show that the sequence (Qn) splits into a compact part and a part that goes to

infinity, as usual for concentration-compactness methods. However, the issue about this splitting
of (Qn) is to keep the constraint given by the definition of K. We cannot just localize Qn by
taking the operator χRQnχR since it does not respect the constraint −P 0 6 χRQnχR 6 1− P 0

for Qn ∈ K. We thus have to define adapted localization operators.

Localization operators. From now on we use the notation P 0
+ := 1− P 0. We define

XR := P 0χRP
0 + P 0

+χRP
0
+. (5.6)

We obviously have 0 6 XR 6 1 so that we can define YR as the unique non-negative operator
verifying X2

R + Y 2
R = 1. The important property satisfied by XR, YR is that they commute with

P 0. They also verify the following properties

Lemma 5.3. The localization operators XR, YR are continuous on SP 0

1 (HΛ), that is there exists
C > 0 independent of Λ, R such that

∀Q ∈ SP 0

1 (HΛ), ‖XRQXR‖1;P 0 + ‖YRQYR‖1;P 0 6 C‖Q‖1:P 0 .

Moreover, if Q belongs to K, XRQXR and YRQYR also do.
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Proof. Since 0 6 χR 6 1, one can see that ‖XR‖S∞ , ‖YR‖S∞ 6 1 so that

‖XRQXR‖S2 6 ‖XR‖2S∞‖Q‖S2 6 ‖Q‖S2 ,

because the map A ∈ S2 7→ AK ∈ S2 is continuous for K ∈ S∞. Moreover,

[XR, P
0] = 0⇒ ‖(XRQXR)−−‖S1 = ‖XRQ

−−XR‖S1 6 ‖Q−−‖S1 .

The same result holds for YR. Finally, since −P 0 6 Q 6 P 0
+, we have

XRQXR 6 XRP
0
+XR = (P 0

+χRP
0
+)2 6 P 0

+χ
2
RP

0
+ 6 P 0

+.

We show that XRQXR > −P 0 by the same argument.
For YR we just remark that if we have 0 6 Q+ P 0 6 1, then

0 6 YR(Q+ P 0)YR 6 Y 2
R = 1−X2

R (Y ∗R = YR)
0 6 YRQYR + P 0 −X2

RP
0 6 1−X2

R

XRP
0XR︸ ︷︷ ︸

>0

6 YRQYR + P 0 6 1− P 0
+X

2
R︸ ︷︷ ︸

=XRP 0
+XR

(P 0 − 1 = −P 0
+),

since XR commutes with P 0
+. We just remark that 0 6 XRP

0
+XR 6 1 because XR is selfadjoint

and A 6 B ⇒ CAC∗ 6 CBC∗. Finally we have

0 6 YRQYR + P 0 6 1,

hence YRQYR ∈ K.

Lemma 5.4. We have the following limits

lim
R→∞

‖XR − χR‖S∞ = 0, lim
R→∞

‖YR − ξR‖ = 0. (5.7)

For Q ∈ SP 0

1 (HΛ), one has

lim
R→∞

‖XRQXR −Q‖1;P 0 = 0, lim
R→∞

‖YRQYR‖1;P 0 = 0. (5.8)

Proof. We have XR−χR = [P 0, χR]P 0 + [P 0
+, χR]P 0

+. In the Fourier domain, P 0 is a multiplica-
tion operator since for any p ∈ R3, in a diagonalization basis of D0(p), it multiplies by a matrix
of the form [

0 0
0 I2

]
.

The transformation matrix to a diagonalization basis of D0(p) is given explicitly in [Tha92] and
depends smoothly on the variable p, so that P 0 is a multiplication operator by the matrices f(p)
in the Fourier domain with f smooth on R3. Now let ϕ,ψ ∈ HΛ. We compute

〈ψ, [P 0, χR]ϕ〉 =
∫∫

R6
χ̂R(p− q)ψ̂(p)ϕ̂(q) (f(p)− f(q)) dpdq

=
∫∫

B(0;Λ)2
χ̂R(r)ψ̂(s+

r

2
)ϕ̂(s− r

2
)
(
f(s+

r

2
)− f(s− r

2
)
)

drds.
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Since f is smooth and B(0; Λ) is compact we have |f(s + r/2) − f(s − r/2)| 6 |r|M for some
M > 0 on B(0; Λ)2. Hence

|〈ψ, [P 0, χR]ϕ〉| 6 M

(∫
B(0;Λ)

|rχ̂R(r)|dr

)
‖ψ̂‖L2‖ϕ̂‖L2 ,

so that
‖[P 0, χR]‖S∞ 6

∫
B(0;Λ)

|rχ̂R(r)|dr =
C

R

∫
B(0;Λ)

|rχ̂1(r)|dr = O(1/R).

This also proves that limR→∞ ‖X2
R − χ2

R‖ = 0 since ‖XR‖, ‖χR‖ 6 1 and

X2
R − χ2

R = XR(XR − χR) + (XR − χR)χR.

The square root being a monotone operator we have the following theorem from [Bha97, Theorem
X.1.1]:

Theorem 5.2. Let f be an operator monotone function on R+ such that f(0) = 0. Then for all
positive operators A,B,

‖f(A)− f(B)‖ 6 f(‖A−B‖).

Applying this theorem we obtain

‖YR − ξR‖ 6 ‖Y 2
R − ξ2

R‖1/2 = ‖X2
R − χ2

R‖1/2 → 0 (R→∞).

We now want to prove that ‖XRQXR−Q‖1;P 0 → 0 for any Q ∈ SP 0

1 (HΛ). It is enough to prove
it for Q of the form |ϕ〉〈ϕ| by density of the finite rank operators in SP 0

1 (HΛ) and by the uniform
boundedness of (XR)R. It is enough to show that χR|ϕ〉〈ϕ|χR − |ϕ〉〈ϕ| → 0 in S1 by (5.7). But
this is obvious since χRϕ → ϕ in HΛ by dominated convergence. We can use the exact same
argument for YR, using again (5.7).

Lemma 5.5. For any R, XR and 1 − YR are in S1(HΛ) and in particular are compact. The
map Q 7→ XRQXR is also compact: if Qn ⇀ Q in SP 0

1 (HΛ), then XRQnXR → XRQXR in
SP 0

1 (HΛ). It is also true when we replace XR by 1− YR.

Proof. We use the Kato-Seiler-Simon inequality [Sim79, Theorem 4.1]

‖f(−i∇)g(x)‖S2 6 C‖f‖L2‖g‖L2 ,

where f(−i∇) denotes a translation-invariant operator acting by the multiplication by f(p) in
the Fourier domain, and g(x) denotes a multiplication operator acting on L2. We thus obtain

‖XR‖S1 = ‖P 0√χR‖2S2
+ ‖P 0

+

√
χR‖2S2

6 2C|B(0; Λ)|R
∫

R3
χ,

which proves that XR is trace-class for any fixed R. We then have

0 6 1− YR 6 1− Y 2
R = X2

R 6 XR,

so that 1−YR ∈ S1. Now let Qn ⇀ Q in SP 0

1 (HΛ). The compactness of the map Q 7→ XRQXR

can actually be shown for any A ∈ S1 instead of XR. Indeed, by density of the finite rank
operators in S1 it is sufficient to prove that

|ϕ〉〈ϕ|Qn|ϕ〉〈ϕ| → |ϕ〉〈ϕ|Q|ϕ〉〈ϕ|.
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We just remark that
|ϕ〉〈ϕ|Qn|ϕ〉〈ϕ| = tr(Qn|ϕ〉〈ϕ|)︸ ︷︷ ︸

→tr(Q|ϕ〉〈ϕ|)

|ϕ〉〈ϕ|,

by definition of Qn ⇀ Q. We do the exact same thing for 1− YR ∈ S1.

We are now nearly able to conclude. Let us consider our minimizing sequence (Qn) which
converges weakly towards Q in SP 0

1 (HΛ). We can write

trP 0(D0Qn) = trP 0(D0XRQnXR) + trP 0(D0YRQnYR) + tr([XR, |D0|](Q++
n −Q−−n )XR)

+ tr([YR, |D0|](Q++
n −Q−−n )YR). (5.9)

Notice that we have used the fact that XR, YR commute with P 0, P 0
+ in the computation of the

last two terms. We have

| tr([XR, |D0|](Q++
n −Q−−n XR))| 6 C‖[XR, |D0|]‖S∞ ,

since (Q++
n ), (Q−−n ) are bounded in S1 and ‖XR‖ 6 1. Hence

trP 0(D0Qn) > trP 0(D0Q) + trP 0(D0YRQnYR) + trP 0(D0XR(Qn −Q)XR)

+ trP 0(D0(XRQXR −Q))− C(‖XR, |D0|‖S∞ + ‖[YR, |D0|]‖S∞). (5.10)

To treat the direct term we use

Lemma 5.6. Let (Rn) be a sequence in SP 0

1 (HΛ) such that Rn ⇀ 0. Then for a fixed R,

lim
n→∞

‖ρRn − ρYRRnYR‖C = 0.

Proof. We have

Rn − YRRnYR = −(1− YR)Rn(1− YR) +Rn(1− YR) + (1− YR)Rn.

By lemma 5.5, (1 − YR)Rn(1 − YR) → 0. Then, 1 − YR ∈ S1 so that we can approach it by
finite-rank operators. It is then sufficient to prove that, denoting by Sn := Rn|ϕ〉〈ϕ|,

ρSn → 0, ϕ ∈ HΛ ∩ L1.

It is easy to see that the integral kernel of Sn is

Sn(x, y) =
∫

R3
Rn(x, z)ϕ(z)ϕ(y)∗ dz,

so that
ρSn(x) = TrC4 (Sn(x, x)) =

∫
R3

TrC4 (Rn(x, y)ϕ(y)ϕ(x)∗) dx.

Hence
‖ρSn‖L1 6

∫∫
R6
‖Rn(x, y)‖|ϕ(y)||ϕ(x)|dxdy.

Since Rn ⇀ 0, we can assume that the convergence is also in L2
loc thanks to the cutoff in the

Fourier domains which guarantees that (Rn) is actually bounded in every Hs. For any K ⊂ R6

a compact set, Rn → 0 in L2(K) and, again thanks to the Fourier cutoff, in any Hs(K) so that
for s large enough, Rn → 0 in C0(K). We can thus assume that Rn → 0 uniformly on every
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compact set of R6. Since ϕ ∈ L1, ‖ρSn‖L1 → 0 by dominated convergence, hence ‖ρ̂Sn‖L∞ → 0
and also ‖ρSn‖C → 0 since∫

B(0;Λ)

|ρ̂Sn(k)|2

|k|2
dk 6 ‖ρ̂Sn‖2L∞

∫
B(0;Λ)

dk
|k|2

.

Let us now finish the proof of the theorem.

D(ρQn , ρQn) = D(ρQ, ρQ) +D(ρYR(Qn−Q)YR , ρYR(Qn−Q)YR) + εR1 (n)

> D(ρQ, ρQ) +D(ρYRQnYR , ρYRQnYR) + εR1 (n)− C1‖ρYRQYR‖2C ,

where we have used that the sequence (Qn) is bounded in SP 0

1 (HΛ) in the last term, C1 being a
constant independent of R and n. We also have

D(ρQn , ν) = D(ρQ, ν) + ε2(n),

where ε2(n) = D(ρQn−Q, ν)→ 0 as n→∞ since Qn ⇀ Q⇒ ρQn ⇀ ρQ in C, and

εR1 (n) = ‖ρQn−Q‖2C − ‖ρYR(Qn−Q)YR‖
2
C + 2D(ρQn−Q, ρQ)

= D(ρQn−Q − ρYR(Qn−Q)YR︸ ︷︷ ︸
→0 (n→∞) by lemma 5.6

, ρQn−Q + ρYR(Qn−Q)YR︸ ︷︷ ︸
bounded

) + 2D(ρQn−Q, ρQ)︸ ︷︷ ︸
→0 (Qn⇀Q)

,

so that εR1 (n)→ 0 as n→∞. We thus have for the total energy

Eν(Qn) > Eν(Q) + E0(YRQnYR) + εR1 (n)− ε2(n) + trP 0(D0XR(Qn −Q)XR)

+ trP 0(D0(XRQXR −Q))− C(‖[YR, |D0|]‖S∞ + ‖[XR, |D0|]‖S∞)− C1‖ρYRQYR‖2C . (5.11)

Notice that
q = trP 0(Qn) = trP 0(XRQnXR) + trP 0(YRQnYR),

where we have used [P 0, XR] = 0 = [P 0, YR]. Moreover,

Eν(Q) + E0(YRQnYR) > Eν(q − k) + E0(trP 0(YRQnYR))
= Eν(q − k) + E0(q − trP 0(XRQnXR)).

We now pass to the limit n → ∞ in the inequality (5.11) with a fixed R, using lemma 5.5, the
boundedness of D0 and the continuity of the map q 7→ Eν(q) proved in [HLS09, Corollary 9]:

Eν(q) > Eν(q − k) + E0(q − trP 0(XRQXR)) + trP 0(D0(XRQXR −Q))

− C(‖[YR, |D0|]‖S∞ + ‖[XR, |D0|]‖S∞)− C1‖ρYRQYR‖2C (5.12)

Using now lemma 5.4 and the boundedness of |D0| we have

lim
R→∞

‖[XR, |D0|]‖S∞ = lim
R→∞

‖[χR, |D0|]‖S∞ = 0,

and by the same argument the same result holds for YR. Finally, we pass to the limit R→∞ in
the inequality (5.12). Using again lemma 5.4, the continuity of the maps Q 7→ ρQ, q 7→ Eν(q),
and the boundedness of D0, we get

Eν(q) > Eν(q − k) + E0(k),

which contradicts the hypothesis (i) and proves the theorem.
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5.2 The Thermodynamic limit

We have seen that there exists minimizers of the energy with charge constraints under a binding
condition. We now want to prove the convergence of the lowest energy in a box towards the
lowest energy in the whole space. We recall the context in the box CL = [−L/2;L/2[3. We
consider the lowest energy

EL,ν(q) := inf
{
EL,ν(Q), Q ∈ QLΛ(q)

}
,

where

EL,ν(Q) = tr(DLQ)− αDL(ρQ, νL) +
α

2
DL(ρQ, ρQ)

QLΛ(q) :=
{
Q ∈ QLΛ, tr(Q) = q

}
QLΛ :=

{
Q ∈ L(HLΛ), Q∗ = Q, −P 0

L 6 Q 6 1− P 0
L

}
.

Notice that the charge constraint is here tr(Q) = q while one would have expected trP 0
L

(Q)
as in the whole space. Indeed, since we work in a finite-dimensional setting thanks to the box,
any operator in QLΛ is trace-class (it is a matrix!), hence tr(Q) = trP 0

L
(Q). Moreover, the finite-

dimensional setting also implies that the variational set QLΛ(q) is compact and not empty for L
large enough (because of the charge constraint), so that by the strong continuity of the energy,
the existence of a minimizer for EL,ν(q) is completely straightforward.

We then want to prove the following theorem.

Theorem 5.3. Let Λ > 0, ν ∈ C and q ∈ R. Then we have the thermodynamic limit

lim
L→∞

EL,ν(q) = Eν(q). (5.13)

The proof of this theorem is split into two steps:

lim sup
L→∞

EL,ν(q) 6 Eν(q) (5.14)

lim inf
L→∞

EL,ν(q) > Eν(q) (5.15)

We adapt the proofs of [HLS07, Theorem 2.9] and [CDL08, Theorem 5]. The inequality (5.14)
consists in establishing that the infimum on the left side of the inequality is lower than the energy
of a minimizer in the whole space. In order to do so, we just have to restrain the minimizer in
the whole space to the box CL in a way that it becomes eligible for the minimization problem
in a box EL,ν(q) and its energy in a box stays close to its energy in the whole space, which is
Eν(q) by definition.

Restraining an operator in the whole space to the box CL, that is for Q ∈ L(HΛ) associating
a Q̃ ∈ L(HLΛ), is not a trivial task. It is easier to do so for an operator which has a finite-rank,
that is a finite linear combination of projectors |ϕ〉〈ϕ|,ϕ ∈ HΛ, because we just have to associate
to ϕ a ϕ̃ ∈ HLΛ which we can do through the Fourier transform. Furthermore, it has been proved
in [HLS09, Proposition 5] that finite-rank operators are dense in SP 0

1 (HΛ) and since the energy is
strongly continuous for this topology, there exists a minimizing sequence for Eν(q) which consists
of finite-rank operators.

Moreover, one can choose explicitly this minimizing sequence according to [HLS09, Propo-
sition 5] and [HLS09, Theorem 5]. They indeed prove that there exists an orthonormal basis
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(vi)i>−N of H+
Λ := (1 − P 0)HΛ, an orthonormal basis (ui)i>−M of H−Λ := P 0HΛ, a sequence

(λi)i>0 ∈ `2(R+), and a finite-rank γ with 0 6 γ 6 1, such that the sequence (QK) ∈ QΛ(q)
defined by

QK =
−1∑

i=−N
|vi〉〈vi| −

−1∑
i=−M

|ui〉〈ui|+
K∑
i=0

λ2
i

1 + λ2
i

(|vi〉〈vi| − |ui〉〈ui|)

+
K∑
i=0

λi
1 + λ2

i

(|ui〉〈vi|+ |vi〉〈ui|) + γ, (5.16)

is a minimizing sequence for Eν(q). Moreover, we have

γ(QK − γ + P 0) = (QK − γ + P 0)γ = 0. (5.17)

We now explain how to confine this operator in a box. We define an operator

iL : HLΛ −→ HΛ,

by defining its action on the Fourier domain. Recall that in the Fourier domain, functions in HLΛ
are only defined on the lattice

ΓLΛ =
2π
L

Z3 ∩B(0; Λ),

while functions in HΛ are defined on the whole ball B(0; Λ). Hence, defining iL is the same as
defining an application ΓLΛ → B(0; Λ). Before doing so, let us define a 4×4 matrix U(k) for each
k ∈ B(0; Λ). For such a k, let k0 = (k1

0, k
2
0, k

3
0) be the unique element of ΓLΛ such that k belongs

to the “cube”

Ck0 :=
(
k0 +

(
2π
L

)[
0;

k1
0

|k1
0|

[
×
[
0;

k2
0

|k2
0|

[
×
[
0;

k3
0

|k3
0|

[)
∩B(0; Λ).

k0

Ck0

B(0; Λ)

ΓLΛ
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Such a choice for Ck0 ensures that |k| > |k0| for all k ∈ Ck0 , which will have its importance later.
We now recall that D0(k0) is a self-adjoint 4 × 4 matrix with two eigenvalues of multiplicity
2: λ(k0) :=

√
1 + k2

0 and −λ(k0). Hence, there exists a unitary matrix V (k0) such that (see
[Tha92])

V ∗(k0)D0(k0)V (k0) =
[
λ(k0)I2 0

0 −λ(k0)I2

]
.

We thus define U by the formula
U(k) = V (k)V ∗(k0). (5.18)

The action of U(k) over C4 is to map the eigenspace of D0(k0) linked to the eigenvalue λ(k0)
(resp. −λ(k0)), which we denote by H+

Λ(k0) (resp. H−Λ (k0)), to the eigenspace of D0(k) linked to
the eigenvalue λ(k) (resp. −λ(k)), that is H+

Λ(k) (resp. H−Λ (k)). Actually, U(k) is an isometry

U(k) : H±Λ (k0) −→ H±Λ (k).

Let us now define for any k0 ∈ ΓLΛ a function

χk0 : B(0; Λ) −→ R

such that
suppχk0 ⊂ Ck0 ,

∫
χ2
k0

= 1.

Typically, one can consider χk0 = (2π/L)−3/21Ck0
, the characteristic function of the cube Ck0 .

We are now able to define the operator iL. Let f ∈ HLΛ, then iL(f) ∈ HΛ is defined by

∀k ∈ B(0; Λ), îL(f)(k) =
(

2π
L

)3/2 ∑
k0∈ΓLΛ

U(k)f̂(k0)χk0(k). (5.19)

In words, the Fourier transform of iL(f) in k is defined by the value of the Fourier transform of
f in k0 where k0 is the unique element of the lattice ΓLΛ such that k ∈ Ck0 . Let us now detail the
properties satisfied by the operator iL.

Proposition 5.1. 1. The operator iL : HLΛ → HΛ is an isometry;

2. The adjoint i∗L : HΛ → HLΛ of iL is defined by

∀g ∈ HΛ, ∀k0 ∈ ΓLΛ, î∗Lg(k0) =
(

2π
L

)−3/2 ∫
B(0;Λ)

U∗(k)ĝ(k)χk0(k) dk;

3. i∗LiL = IdHLΛ
but for any f ∈ HΛ we only have

iLi
∗
Lf → f (L→∞);

4. (Intertwinning property) iLP 0
L = P 0iL and i∗LP

0 = P 0
Li
∗
L;

5. (Kinetic energy)
‖i∗LD0iL −D0

L‖L(HLΛ) = O(1/L).
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Proof. 1. Let f ∈ HLΛ. Then∫
R3
|iLf(x)|2 dx =

∫
B(0;Λ)

|îLf(k)|2 dk

=
(

2π
L

)3 ∑
k0,k′0∈ΓLΛ

∫
B(0;Λ)

〈U(k)f̂(k0), U(k)f̂(k′0)〉C4χk0(k)χk′0(k) dk

=
(

2π
L

)3 ∑
k0∈ΓLΛ

∫
B(0;Λ)

|U(k)f̂(k0)|2χ2
k0

(k) dk (k0 6= k′0 ⇒ χk0χk′0 = 0)

=
(

2π
L

)3 ∑
k0∈ΓLΛ

∫
B(0;Λ)

|f̂(k0)|2χ2
k0

(k) dk (U isometry)

=
(

2π
L

)3 ∑
k0∈ΓLΛ

|f̂(k0)|2 =
∫

TL
|f |2

(∫
χ2
k0

= 1
)
.

Hence iL is an isometry.
2. Let f ∈ HLΛ and g ∈ HΛ. Then

〈iLf, g〉HΛ =
∫
B(0;Λ)

〈îLf(k), ĝ(k)〉C4 dk

=
(

2π
L

)3/2 ∑
k0∈ΓLΛ

〈f̂(k0),
∫
B(0;Λ)

U∗(k)ĝ(k)χk0(k) dk〉C4

= 〈f, i∗Lg〉HLΛ ,

with î∗Lg(k0) given by the formula in the proposition.
3. Let f ∈ HLΛ. Then for any k0 ∈ ΓLΛ we have

î∗LiLf(k0) =
(

2π
L

)−3/2 ∫
B(0;Λ)

U∗(k)îLf(k)χk0(k) dk

=
∑
k′∈ΓLΛ

∫
B(0;Λ)

U∗(k)U(k)f̂(k′)χk′(k)χk0(k) dk

= f̂(k0)
∫
B(0;Λ)

χ2
k0

(k) dk = f̂(k0).

Thus we have i∗LiL = IdHLΛ
. Conversely, if g ∈ HΛ, then for any k ∈ B(0; Λ)

îLi∗Lg(k) =
(

2π
L

)3/2 ∑
k0∈ΓLΛ

U(k)î∗Lg(k0)χk0(k)

=
∑
k0∈ΓLΛ

∫
B(0;Λ)

U(k)U∗(k′)ĝ(k′)χk0(k′)χk0(k) dk′

= U(k)
∫
B(0;Λ)

U∗(k′)ĝ(k′)

 ∑
k0∈ΓLΛ

χk0(k′)χk0(k)

 dk′.
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One can remark that for any ϕ ∈ C∞(R3),

Tkϕ :=
∫
B(0;Λ)

 ∑
k0∈ΓLΛ

χk0(k′)χk0(k)

ϕ(k′) dk′ −→ ϕ(k) (L→∞).

Indeed,

|Tkϕ− ϕ(k)| =

∣∣∣∣∣∣
∑
k0∈ΓLΛ

∫
B(0;Λ)

χk0(k′)χk0(k)ϕ(k′) dk′ − ϕ(k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
k0∈ΓLΛ

(
2π
L

)−3/2 ∫
Ck0

χk0(k)ϕ(k′) dk′ − ϕ(k)

∣∣∣∣∣∣
=

∣∣∣∣∣
(

2π
L

)−3 ∫
Ck1(L)

ϕ(k′) dk′ − ϕ(k)

∣∣∣∣∣ ,
where k1(L) is the unique element of ΓLΛ such that k ∈ Ck1(L). Hence,

|Tkϕ− ϕ(k)| =

∣∣∣∣∣
(

2π
L

)−3 ∫
Ck1(L)

(ϕ(k′)− ϕ(k)) dk′
∣∣∣∣∣

6

(
2π
L

)−3 ∫
Ck1(L)

|ϕ(k′)− ϕ(k)| dk′

6 sup
k′∈Ck1(L)

|ϕ(k′)− ϕ(k)| = O(1/L).

We want to apply this to the map k′ 7→ U∗(k′)ĝ(k′). The map k′ 7→ U∗(k′) is actually C∞

[Tha92] but we cannot say the same about ĝ. Thus, we will assume that g ∈ S(R3)∩HΛ so that
ĝ ∈ C∞ and then

îLi∗Lg(k) = U(k)U∗(k)ĝ(k) = ĝ(k).

So that iLi∗L → IdHΛ pointwise on S(R3) ∩ HΛ which is dense in HΛ. Since iLi∗L is an isometry
and hence is continuous, we have iLi∗L → IdHΛ pointwise on HΛ.

4. It is sufficient to prove that P 0iL = iLP
0
L : HLΛ → HΛ. We will prove this equality on

HL,−Λ := P 0
LHLΛ and HL,+Λ := (1− P 0

L)HLΛ because

HLΛ = HL,−Λ

⊥
⊕ HL,+Λ .

Since
ϕ ∈ H,±Λ ⇔

(
ϕ̂(k) ∈ H±Λ (k) ∀k ∈ ΓLΛ

)
,

for any ϕ ∈ HL,±Λ , we have on the one hand

iLP
0
Lϕ = δ(−,±)iLϕ,

and on the other hand

îLϕ(k) =
(

2π
L

)3/2 ∑
k0∈ΓLΛ

U(k)ϕ̂(k0)︸ ︷︷ ︸
∈H±Λ (k)

χk0(k),
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so that we also have
P 0iLϕ = δ(−,±)iLϕ.

Indeed in the whole space we also have

f ∈ H−Λ := P 0HΛ ⇔
(
f̂(k) ∈ H−Λ (k) ∀k ∈ B(0; Λ)

)
,

with the obvious converse equivalence for H+
Λ := (1 − P 0)HΛ. We thus have iLP 0

L = P 0iL and
the proposition is proved.

5. Let us consider f ∈ HL,+Λ and let us compute i∗LD
0iLf . We have for k ∈ B(0; Λ)

D̂0iLf(k) =
(

2π
L

)3/2 ∑
k0∈ΓLΛ

D0(k)U(k)f̂(k0)︸ ︷︷ ︸
∈H+

Λ (k)

χk0(k)

=
(

2π
L

)3/2 ∑
k0∈ΓLΛ

√
1 + k2U(k)f̂(k0)χk0(k),

so that for k′ ∈ ΓLΛ

̂i∗LD0iLf(k′) =
(

2π
L

)−3/2 ∫
B(0;Λ)

U∗(k)D̂0iLf(k)χk′(k) dk

=
∫
B(0;Λ)

∑
k0∈ΓLΛ

√
1 + k2U∗(k)U(k)f̂(k0)χk0(k)χk′(k) dk

=
∫
B(0;Λ)

√
1 + k2f̂(k′)χ2

k′(k) dk.

One can remark that χ2
k′ → δ(· − k′) in D′(R3) or we can do the direct computation

∣∣∣ ̂i∗LD0iLf(k′)− D̂0
Lf(k′)

∣∣∣ =

∣∣∣∣∣
∫
B(0;Λ)

√
1 + k2f̂(k′)χ2

k′(k) dk −
√

1 + k′2f̂(k′)

∣∣∣∣∣
=

∣∣∣∣∣∣∣f̂(k′)
(

2π
L

)−3 ∫
Ck′

(
√

1 + k2 −
√

1 + k′2)︸ ︷︷ ︸
| |6|k−k′|

dk

∣∣∣∣∣∣∣
6 |f̂(k′)| sup

k∈Ck′
|k − k′| = O(1/L).

We are now able to establish the inequality (5.14).

Proof of the inequality (5.14). Let ε > 0. Since (QK)K>1 is a minimizing sequence for
Eν(q), let K be such that

Eν(QK) 6 Eν(q) + ε.

As γ is finite-rank, we write
γ =

∑
j∈J

nj |ψj〉〈ψj |,

41



with J finite, 0 6 nj 6 1, and the (ψj) orthonormal. Let us now restrain QK to an operator on
HLΛ. We define for all i 6 K

uLi := i∗Lui

and (vLi )i6K ,(ψLj )j∈J in the same manner. We have

〈uLi , uLj 〉HLΛ = 〈i∗Lui, i∗Luj〉HLΛ = 〈iLi∗Lui, uj〉HΛ → δij (L→∞) (5.20)

by the proposition 5.1 (3). Furthermore,

P 0
Lu

L
i = P 0

Li
∗
Lui = i∗LP

0ui = i∗Lui = uLi , (5.21)

be the intertwinning property of i∗L. We then build by the Gram-Schimdt orthonormalisation
procedure an orthonormal set (ũi

L)i6K of P 0
LHLΛ such that ‖ũiL−uLi ‖ → 0 as L→∞. However,

it is not obvious that the family (uLi )i6K is independent for a fixed L since for instance for low
L, the dimension of HLΛ is also low so that the family (uLi )i6K which is of fixed cardinal cannot
be independent. Thus, let us prove the following lemma.

Lemma 5.7. There exists L > 0 so that for all L′ > L, the family (uL
′

i )i6K is independent.

Proof. Let us consider for all L a relation∑
i6K

λLi u
L
i = 0,

where λLi ∈ C. We recall that K does not depend of L. We have to show that

∃L > 0, ∀L′ > L,
∑
i6K

λL
′

i u
L′

i = 0⇒ max
i
|λLi | = 0.

Let us thus assume that there exists a sequence (Ln)n∈N with Ln →∞ and for each n a relation∑
i6K λ

Ln
i uLni = 0 such that maxi |λLni | > 0. We pose

λni := λLni , uni := uLni .

We can assume that the sequence (λni )i,n is bounded. Indeed, for a fixed n one can divide each
λni by λni0 such that |λni0 | = maxi |λni |. We can thus assume that for all n, maxi |λni | = 1 and
for a fixed i, we can assume that (λni ) converges towards λi up to a subsequence. Moreover, as
there is a finite number of i, we can also assume that up to subsequence, the maximum of |λni |
is attained for the same index i0 for all n. In particular, we have 1 = |λni0 | → |λi0 |. For all n we
have ∑

i

λni u
n
i = 0⇒ 0 =

∑
i

λni 〈uni , uni0〉 →
∑
i

λiδii0 = λi0 ,

by the limit (5.20). Hence λi0 = 0 but |λi0 | = 1, which is absurd and proves the lemma.

We then apply the Gram-Schimdt process to this family for all L large enough by the lemma
(notice that this family is finite so that there is a finite number of steps in this process):

ũ1
L := uL1 (5.22)

ũi+1
L := uLi+1 −

i∑
j=1

〈ũjL, uLi+1〉
‖ũjL‖2

ũj
L, (i > 1). (5.23)
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We prove that ‖ũiL − uLi ‖ → ∞ by induction on the index i. The case i = 1 is trivial. Then we
just remark that

‖ũiL − uLi ‖ 6
i−1∑
j=1

|〈ũjL, uLi 〉|
‖ũjL‖

.

Since ‖uLj − ũj
L‖ → 0 and ‖uLj ‖ → 1 by (5.20) for all 1 6 j 6 i−1, for L large enough the family

(‖ũjL‖)16j6i−1 is bounded by below uniformly on L by a strictly positive constant. Finally,
again by ‖uLj − ũj

L‖ → 0 and the limit (5.20), we have

lim
L→∞

|〈ũjL, uLi 〉| = 0, 1 6 j 6 i− 1,

and thus
lim
L→∞

‖ũiL − uLi ‖ = 0.

We define in the same way (ṽi
L), (ψ̃j

L
). We now define the test state for EL,ν(q) as

Q̃L :=
−1∑

i=−N
|ṽiL〉〈ṽiL| −

−1∑
i=−M

|ũiL〉〈ũiL|+
K∑
i=0

λ2
i

1 + λ2
i

(|ṽiL〉〈ṽiL| − |ũiL〉〈ũiL|)

+
K∑
i=0

λi
1 + λ2

i

(|ũiL〉〈ṽiL|+ |ṽiL〉〈ũiL|) +
∑
j∈J

nj |ψ̃j
L
〉〈ψ̃j

L
|. (5.24)

We still have tr(Q̃L) = q and −P 0
L 6 Q̃L 6 1 − P 0

L by orthonormality of the (ũi
L), (ṽi

L) and

(ψ̃j
L

), and because
P 0
L =

∑
i>−M

|ũiL〉〈ũiL|.

Hence, Q̃L is eligible for EL,ν(q) so that

EL,ν(Q̃L) > EL,ν(q).

The energy of this state is

EL,ν(Q̃L) = tr(D0
LQ̃

L)− αDL(ρ eQL , νL) +
α

2
DL(ρ eQL , ρ eQL).

We just have to show that this energy converges towards Eν(QK). Since the kinetic energy
Q 7→ tr(D0Q) is linear, we just have to prove

tr(D0
L|ϕ̃L〉〈ξ̃L|)→ tr(D0|ϕ〉〈ξ|),

where ϕ and ξ denote either a ui, a vi, or a ψi, according to the decomposition (5.24). Recall
that

tr(D0
L|ϕ̃L〉〈ξ̃L|) = 〈D0

Lϕ̃
L, ξ̃L〉.

We then notice that
〈D0

Lϕ̃
L, ξ̃L〉 = 〈D0

Lϕ
L, ξL〉+O(1/L)

because ‖ϕ̃L − ϕL‖ → 0 and ‖ξ̃L − ξL‖ → 0. Moreover,

〈D0
Lϕ

L, ξL〉 =
(

2π
L

)3 ∑
k0∈ΓLΛ

〈D0(k0)ϕ̂L(k0), ξ̂L(k0)〉C4 =
(

2π
L

)3 ∑
k0∈ΓLΛ

〈D0(k0)î∗Lϕ(k0), î∗Lξ(k0)〉C4 .
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We show that |î∗Lϕ(k0)− ϕ̂(k0)| = oL(1). Indeed,

|î∗Lϕ(k0)− ϕ̂(k0)| =
(

2π
L

)−3

∣∣∣∣∣∣∣
∫
Ck0

(U∗(k)ϕ̂(k)− ϕ̂(k0)︸ ︷︷ ︸
=U∗(k0) bϕ(k0)

) dk

∣∣∣∣∣∣∣
6 sup

k∈Ck0

|U∗(k)ϕ̂(k)− U∗(k0)ϕ̂(k0)|︸ ︷︷ ︸
continuous

= oL(1).

Thus

〈D0
Lϕ̃

L, ξ̃L〉 =
(

2π
L

)3 ∑
k0∈ΓLΛ

〈D0(k0)ϕ̂(k0), ξ̂(k0)〉C4 +OL(1)→
∫
B(0;Λ)

〈D0(k)ϕ̂(k), ξ̂(k)〉C4 dk,

so that 〈D0
Lϕ̃

L, ξ̃L〉 → 〈D0ϕ, ξ〉 and hence tr(D0
LQ̃

L) → tr(D0QK) as L → ∞. It now remains
to prove the convergence of the potential energy. We first remark that, if we define the sequence
(fL) ⊂ HΛ by

f̂L(k) =
∑
k0∈ΓLΛ

ρ̂ eQL(k0)1Ck0
(k), ∀k ∈ B(0; Λ),

then

D(fL, fL) =
∫
B(0;Λ)

|f̂L(k)|2

|k|2
dk

=
∑

k0,k′0∈ΓLΛ

ρ̂ eQL(k0)ρ̂ eQL(k′0)
∫
B(0,Λ)

1Ck0
(k)1Ck′0 (k)

|k|2
dk

=
∑
k0∈ΓLΛ

|ρ̂ eQL(k0)|2
∫
Ck0

dk
|k|2

=
(

2π
L

)3 ∑
k0∈ΓLΛ

|ρ̂ eQL(k0)|2

|k0|2
+O(1/L)

= DL(ρ eQL , ρ eQL) +O(1/L).

Hence, it is sufficient to show that

D(fL, fL) −→
L→∞

D(ρQK , ρQK ),

to have the convergence of the potential energy. Indeed, if (fL) converges strongly towards ρQK
in C, then it also converges weakly towards ρQK in C and we have also D(fL, ν)→ D(ρQK , ν) as
L→∞. In order to have the strong convergence in C, we remark that by the Hardy-Littlewood-
Sobolev inequality,

D(ρ, ρ) 6 C‖ρ‖L6/5 6 C ′(‖ρ‖L1 + ‖ρ‖L2),

so that the strong convergence in L1, L2 implies the strong convergence in C. But

fL
L1,L2

−→ ρQK ⇔ f̂L
L2,L∞−→ ρ̂QK ⇔ f̂L

L∞−→ ρ̂QK ,

because the Fourier transforms have their supports in B(0; Λ). According to the definition of f̂L,
the convergence of f̂L towards ρ̂QK in L∞ is equivalent to show that

∀k0 ∈ ΓLΛ,∀k ∈ Ck0 , |ρ̂ eQL(k)− ρ̂QK (k)| = oL(1),
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where the oL(1) does not depend on k0. In order to have this condition, one can show that it is
sufficient to have the convergence of (1CLρ eQL) towards ρQK in L1. But according to the form

(5.24) of Q̃L, it is then sufficient to prove that ([1CLϕ
L]2) converges towards ϕ2 in L1, where ϕ

denotes whether a ui, a vi, or a ψi. Indeed,

ρ|ϕ〉〈ϕ| = |ϕ|2.

We already have
lim
L→∞

‖[1CLϕL]2‖L1 = ‖ϕ2‖L1 ,

so that by the missing term in Fatou’s lemma, it remains to show that ([1CLϕ
L]2) converges

almost everywhere towards ϕ2. One already has the convergence of iLϕL towards ϕ in L2, hence
almost everywhere up to a subsequence. Let us now show that ∀x ∈ R3, iLϕL(x) − ϕL(x) → 0
as L→∞. Indeed,

iLϕ
L(x) =

1
(2π)3/2

∫
B(0;Λ)

îLϕL(k)eik·x dk

=
1

L3/2

∑
k0∈ΓLΛ

(∫
B(0;Λ)

χk0(k)U(k)eik·x dk

)
ϕ̂L(k0)

=
(2π)3/2

L3

∑
k0∈ΓLΛ

U(k0)ϕ̂L(k0)︸ ︷︷ ︸
= cϕL(k0)

eik0·x + oL(1)

= ϕL(x) + oL(1).

Thus we have
DL(ρ eQL , ρ eQL) −→

L→∞
D(ρQK , ρQK )

and
DL(ρ eQL , νL) −→

L→∞
D(ρQK , ν).

Finally,
EL,ν(q) 6 EL,ν(Q̃L) −→

L→∞
Eν(QK) 6 Eν(q) + ε,

hence
lim sup
L→∞

EL,ν(q) 6 Eν(q) + ε, ∀ε > 0.

We have proved the inequality (5.14).

Proof of the inequality (5.15). The idea of the proof is the converse of the last one. Indeed,
we have to find an energy greater than Eν(q) while staying close to EL,ν(q). In order to do so,
we extend a ground state in a box CL to a state in the whole space so that

1. it is eligible for Eν(q), hence its energy is greater than Eν(q);

2. its energy in the whole space remains close to its energy in a box, that is EL,ν(q).

Let now QL ∈ QLΛ(q). We want to extend this operator to an operator in QΛ(q). We define

Q̃L := iLQLi
∗
L.
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Let us check that Q̃L ∈ QΛ(q). We have immediately Q̃∗L = Q̃L. Since −P 0
L 6 QL 6 1− P 0

L we
have

−iLP 0
Li
∗
L 6 Q̃L 6 iLi

∗
L − iLP 0

Li
∗
L.

But since iLi∗L is an isometry, iLi∗L 6 1. Moreover by Proposition 5.1 (4),

iLP
0
Li
∗
L = iLP

0
LP

0
Li
∗
L = P 0iLi

∗
LP

0.

Recall that A 6 B ⇒ CAC∗ 6 CBC∗ for all operators A,B,C, so that

iLP
0
Li
∗
L 6 P 0P 0 = P 0,

and we have
−P 0 6 Q̃L 6 1− P 0.

Let us now examine the charge constraint.

trP 0(iLQLi∗L) = tr(P 0iLQLi
∗
LP

0) + tr(P 0
+iLQLi

∗
LP

0
+)

= tr(iLP 0
LQLP

0
Li
∗
L) + tr(iL(1− P 0

L)QL(1− P 0
L)i∗L) (Prop. 5.1 (4))

= tr(P 0
LQLP

0
L) + tr((1− P 0

L)QL(1− P 0
L)) (i∗LiL = Id)

= tr(P 0
LQLP

0
L + (1− P 0

L)QL(1− P 0
L)) = tr(QL) = q.

We thus have Q̃L ∈ QΛ(q). Let us choose QL as a minimizer for EL,ν(q), that is EL,ν(QL) =
EL,ν(q). By definition

EL,ν(q) = EL,ν(QL) = tr(D0
LQL)− αDL(ρQL , νL) +

α

2
DL(ρQL , ρQL) (5.25)

One also has
Eν(q) > lim sup

L→∞
EL,ν(q) = lim sup

L→∞
EL,ν(QL),

by inequality (5.14). The energy being coercive, the sequences (QL) is bounded in the sense
that QL(x, y)1CL(x)1CL(y) is bounded in L2(R3×R3) and ρQL(x)1CL(x) is bounded in L2(R3).
Hence, up to a subsequence and as in the proof of lemma 5.6 we can assume that

QL(x, y)1CL(x)1CL(y) ⇀ Q(x, y)

in L2(R3 × R3), uniformly on compact subsets of R6 and that

ρQL(x)1CL(x) ⇀ ρQ(x)

in L2(R3), uniformly on compact subsets of R3. Let us now study the convergence of the kinetic
energy.

Lemma 5.8. The kinetic energy of Q̃L satisfies∣∣∣trP 0(D0Q̃L)− tr(D0
LQL)

∣∣∣ = O

(
1
L

)
.

Proof. A short computation similar to the one determining the charge of Q̃L shows that

trP 0(D0Q̃L) = tr(i∗LD
0iLP

0
LQLP

0
L) + tr(i∗LD

0iL(1− P 0
L)QL(1− P 0

L)).

The sequence (QL) verifies that (tr(P 0
LQLP

0
L))L and (tr(1−P 0

L)QL(1−P 0
L))L are both bounded.

Hence, using the proposition 5.1 (5), the lemma is obvious.
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The kinetic energy being coercive, the sequence (Q̃L) is bounded in SP 0

1 . We can thus assume
that up to a subsequence, Q̃L ⇀ Q in SP 0

1 (HΛ). Let us show that Q = Q. Let f, g ∈ C∞0 (R3).
Since iLi∗Lg → g,

〈Q̃Lf, g〉 = 〈iLQLi∗Lf, iLi∗Lg〉+O(1/L).

But since i∗LiL = Id,

〈iLQLi∗Lf, iLi∗Lg〉 = 〈QLi∗Lg, i∗Lg〉

=
∫∫

R3×R3
QL(x, y)1CL(x)1CL(y)i∗Lf(x)i∗Lg(y) dxdy → 〈Qf, g〉

by weak convergence of QL(x, y)1CL(x)1CL(y) and strong convergence of 1CLi
∗
Lf towards f in

L2(R3). We also have
〈Q̃Lf, g〉 → 〈Qf, g〉

so that Q = Q and hence ρQ = ρQ. We now study the convergence of the potential energy term.
Let us prove the following lemma.

Lemma 5.9.
lim inf
L→∞

DL(ρQL , ρQL) > D(ρQ, ρQ). (5.26)

Proof. We introduce an auxiliary function ρL ∈ C which has the same weak L2-limit as ρ eQL , by

ρ̂L(k) :=
∑
k0∈ΓLΛ

ρ̂QL(k0)1Ck0
(k).

We have ∫
R3
|ρL|2 =

(
2π
L

)3 ∑
k0∈ΓLΛ

|ρ̂QL(k0)|2 =
∫

TL
|ρQL |2

and since |k| > |k0|,∀k ∈ Ck0 ,

D(ρL, ρL) = 4π
∑
k0∈ΓΛ

|ρ̂QL(k0)|2
∫
Ck0

dk
|k|2

6 4π
(

2π
L

)3 ∑
k0∈ΓLΛ

|ρ̂QL(k0)|2

|k0|2
= DL(ρQL , ρQL),

so that (ρL) is bounded both in L2(R3) and in C. Up to a subsequence, it thus converges weakly
towards the same limit ρ, in L2(R3) and C. By the weak continuity of the C-norm, we have

lim inf
L→∞

D(ρL, ρL) > D(ρ, ρ).

We just have to show that ρ = ρQ. Let us take f ∈ C∞0 (R3) and L large enough such that
suppf ⊂ CL. Then∫

R3
ρLf =

∑
k0∈ΓLΛ

ρ̂QL(k0)
∫
Ck0

f̂(k) dk =
(

2π
L

)3 ∑
k0∈ΓLΛ

ρ̂QL(k0)f̂(k0) + oL(1) =
∫

TL
ρQLf + oL(1).

Hence, ∫
ρf = lim

L→∞

∫
ρLf = lim

L→∞

∫
TL
ρQLf =

∫
ρQf,

thus ρ = ρQ and the lemma is proved.
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One verifies in the same way that

DL(ρQL , νL) = D(ρL, ν) + oL(1),

so that
DL(ρQL , νL) −→

L→∞
D(ρ, ν) = D(ρQ, ν),

by the weak convergence of (ρL) towards ρ in C. Let us recall the equality (5.25) and use the
localization operators XR,YR introduced earlier

EL,ν(q) = trP 0(D0Q̃L)− αDL(ρQL , νL) +
α

2
DL(ρQL , ρQL) +O(1/L) (5.27)

= trP 0(XRD
0Q̃LXR) + trP 0(YRD0Q̃LYR)− αDL(ρQL , νL) (5.28)

+
α

2
DL(ρQL , ρQL) +O(1/L) (5.29)

= trP 0(D0XRQ̃LXR) + trP 0(D0YRQ̃LYR)− αDL(ρQL , νL) (5.30)

+
α

2
DL(ρQL , ρQL) +O(1/L) +O(1/R). (5.31)

We now have the important fact, characteristic of the reduced model, that

E0(k) = inf{trP 0(D0Q) + (α/2)D(ρQ, ρQ), Q ∈ QΛ(k)}
= inf{trP 0(D0Q), Q ∈ QΛ(k)},

so that

trP 0(D0YRQ̃LYR) > E0(trP 0(YRQ̃LYR))

> E0(q − trP 0(XRQ̃LXR)),

since trP 0(Q̃L) = q. Taking the limit L → ∞ in (5.31), using the local strong convergence of
(Q̃L)L, lemma 5.9, and the continuity of k 7→ E0(k), we have for all R

lim inf
L→∞

EL,ν(q) > trP 0(D0XRQXR)−αD(ρQ, ν)+
α

2
D(ρQ, ρQ)+E0(q−trP 0(XRQXR))+O(1/R).

(5.32)
Finally, as R→∞, with k := trP 0(Q),

lim inf
L→∞

EL,ν(q) > trP 0(D0Q)− αD(ρQ, ν) +
α

2
D(ρQ, ρQ) + E0(q − trP 0(Q))

= Eν(Q) + E0(q − k) > Eν(k) + E0(q − k) > Eν(q).

We thus have proved the inequality (5.15) and hence the theorem 5.3.

A A key lemma

Lemma A.1. Let A ∈Mn(C) a self-adjoint matrix. Then the following minimization problem

inf
06γ6I
γ∗=γ

tr(Aγ)

is attained by γ = χ(−∞,0)(A), the orthogonal projector on the direct sum of the eigenspaces
of A linked to negative eigenvalues. The attained minimum is thus the sum of these negative
eigenvalues, counted with multiplicity. If moreover A is invertible, this minimizer is unique. If
its not invertible, every minimizer takes the form γ = χ(−∞,0)(A) + δ, where 0 6 δ 6 χ{0}(A),
δ∗ = δ.
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Proof. Let P = χ(−∞,0)(A). We have P + P⊥ = I, where I is the identity operator of Cn. We
then show that for any γ eligible for the minimization problem, tr(A(γ − P )) > 0. Indeed,

tr(A(γ − P )) = tr((P + P⊥)A(γ − P )(P + P⊥))
= tr(PA(γ − P )P + P⊥A(γ − P )P⊥),

by expanding the product in the first line et by using the relations tr(XY ) = tr(Y X) as well
as PP⊥ = 0. Recall that the operator |A| :=

√
A∗A is a positive operator which is a multpile

of the identity with coefficient |λ| on ker(A − λI), for λ ∈ Sp(A) the spectrum of A. We have
PA = −|A|P and P⊥A = |A|P . Denoting Q = γ − P we thus have

tr(AQ) = tr(|A|(Q++ −Q−−)),

where Q++ := P⊥QP⊥ et Q−− := PQP . Moreover, there is the

Lemma A.2 (Bach’s inequality [BBHS99]).

Q++ −Q−− > Q2. (A.1)

Proof. Knowing that 0 6 γ = Q+P 6 I, we also have 0 6 (Q+P )2 6 Q+P . Writing now that

(Q+ P )2 = Q2 +QP + PQ+ P 2

= Q2 + PQP + P⊥QP + PQP⊥ + PQP + P

Q+ P = PQP + P⊥QP + PQP⊥ + P⊥QP⊥ + P,

We find the desired result.

We also recall the following result. If X,Y > 0, then tr(XY ) > 0. This implies that if
X > 0, Y > Z, then tr(XY ) > tr(XZ), So that tr(AQ) > tr( |A|︸︷︷︸

>0

Q2︸︷︷︸
>0

) > 0. The equality holds

when Q = 0, which proves that P is a minimizer.
Let us study the uniqueness. If ker(A) = 0, then |A| > εI, where ε > 0 is for instance the

lowest norm of the non-zero eigenvalues of A. Hence 0 = tr(|A|Q2) > ε tr(Q2) = ε tr(Q∗Q) =
ε‖Q‖2HS . We thus have tr(AQ) = 0⇔ Q = 0 and we have the uniqueness of the minimzer.

If A is not invertible, let us π = Pker(A) = χ{0}(A) the orthogonal projector on the kernel
of A. In the same way as we did before, we have |A| > επ⊥ with ε > 0. Hence if γ is a
minimizer, tr(π⊥Q(π⊥Q)∗) = tr(π⊥Q2) = 0, so π⊥Q = 0. Q being self-adjoint, we deduce
that Qπ⊥ = 0 as well. Then, by writing Q = πQπ + π⊥Qπ + πQπ⊥ + π⊥Qπ⊥, we obtain
Q = πQπ = π(γ − P )π = πγπ. We deduce 0 6 Q 6 I, as well as Q 6 π by noticing that
Q− π = πQπ − π 6 0. Finally, every minimizer takes the form γ = P +Q, avec 0 6 Q 6 π.

We can generalize this lemma to the infinite dimension setting.

Lemma A.3. Let H be a separable Hilbert space, A ∈ S1(H) a trace-class self-adjoint operator
and Π a projector on H such that Π − P ∈ S2(H) where P = χ(−∞,0)(A). Then the following
minimization problem

inf
−Π6Q6I−Π

Q∗=Q

trΠ(AQ)

is attained by Q = P −Π. If moreover ∃ε > 0, |A| > εI, this minimizer is unique.
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Proof. The proof is basically the same. We just write for any Q eligible for the minimization
problem, Q = Q′ + P −Π with −P 6 Q′ 6 I − P . Then we notice that

trΠ(AQ) = trΠ(AQ′) + trΠ(A(P −Π)),

and since Π − P ∈ S2(H), trΠ(AQ′) = trP (AQ′) [HLS05a, Lemma 1]. Finally, trP (AQ′) =
tr(|A|((Q′)++ − (Q′)−−) > 0, so that Q′ = 0, hence Q = P −Π, is a minimizer and the proof of
the uniqueness is the same as the finite-dimensional lemma.

B Hartree-Fock states

B.1 Definitions

We here precise the definition of a Hartree-Fock state. We do not state it in the main study
because we saw that every term in the energy could be expressed in terms of the one-particle
density matrix and not in terms of the proper underlying Hartree-Fock state. We choose the
same definition as in [BLS94].

Recall that a generalized state Ω is defined as a linear form on B(H), the set of all bounded
operators on the Hilbert space H of the system, satisfying Ω(Id) = 1 and Ω(A∗A) > 0 for all
A ∈ B(H). Recall also that in our context, H is the Fock space built on HΛ

H = F(HΛ) := C⊕
∞⊕
N=1

N∧
1

HΛ.

We have defined in definition 2.4 the creation and annihilation operators ψ∗k,σ and ψk,σ. Notice
that we have skipped the L in the notation for these sake of readability.

Definition B.1. A state Ω is said to be quasi-free if for any operators e1, . . . , e2N which are
either a ψ∗k,σ or a ψk,σ, then Ω(e1e2 . . . e2N−1) = 0 and

Ω(e1e2 . . . e2N ) =
∑

π∈gS2N

(−1)ε(π)Ω(eπ(1)eπ(2)) . . .Ω(eπ(2N−1)eπ(2N)), (B.1)

where S̃2N is the set of permutations of {1, . . . , 2N} which verify π(1) < π(3) < · · · < π(2N − 1)
and π(2j) < π(2j − 1) for all 1 6 j 6 N , and ε(π) is the parity of the permutation π.

Remark B.1. The relation (B.1) justifies the equality (2.25) used to derive the QED energy.

We now define define the number operator N on the Fock space by

N :=
∑
k,σ

ψ∗k,σψk,σ.

Definition B.2. A state Ω is a generalized Hartree-Fock state if it is quasi-free and has a finite
number of particles Ω(N ).

Remark B.2. Actually one could define Hartree-Fock states with a finite charge instead of
number of particles in a Fock space built upon a reference P 0 as in [CI89, Tha92], so that in
terms of the one-body density matrix γ, it means that tr(γ++−γ−−) <∞. This is exactly saying
that γ is P 0-trace class.
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B.2 Equivalence between the ψ(x) and the ψk,σ representations

We reindex the families (ek,σ) and (ψk,σ) defined in section 2.2.1 as (ei)i∈I and (ψi)i∈I . We
then have

ψ(x) =
∑
i∈I

ei(x)ψi, ψi =
∫

TL
ψ(x)ei(x) dx.

We want to prove that the relations

Ω(ψiψjψkψl) = Ω(ψiψj)Ω(ψkψl)− Ω(ψiψk)Ω(ψjψl) + Ω(ψiψl)Ω(ψjψk),

for all i, j, k, l and

Ω(ψ(x)ψ(y)ψ(z)ψ(t)) = Ω(ψ(x)ψ(y))Ω(ψ(z)ψ(t))− Ω(ψ(x)ψ(z))Ω(ψ(y)ψ(t))
+ Ω(ψ(x)ψ(t))Ω(ψ(y)ψ(z)),

for all x, y, z, t, are equivalent. But is obvious since we have the relations

Ω(ψ(x)ψ(y)ψ(z)ψ(t)) =
∑
ijkl

ei(x)ej(y)ek(z)el(t)Ω(ψiψjψkψl),

and
Ω(ψiψjψkψl) =

∫∫∫∫
ei(x)ej(y)ek(z)el(t)Ω(ψ(x)ψ(y)ψ(z)ψ(t)) dxdydzdt.

Hence, the (ψi)i representation and the (ψ(x))x representation are equivalent.
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in the Bogoliubov-Dirac-Fock approximation. Commun. Math. Phys., 257(3):515–562,
2005.

[HLS05b] Christian Hainzl, Mathieu Lewin, and Éric Séré. Self-consistent solution for the po-
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